Top Banner
Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9
25

Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Geometric Modeling91.580.201

SurfacesMortenson Chapter 6and Angel Chapter 9

Page 2: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Surface Basics• Surface: Locus of a point moving with 2 degrees of freedom.• Some types of equations to describe curves:

– Intrinsic• No reliance on external frame of reference.• Lack of robustness of surface characteristics under repeated transformations.• Discussion deferred until we study more differential geometry.

– Explicit• Value of dependent variable in terms of independent variable(s)• e.g. z = f (x,y)• Lack of robustness of surface characteristics under repeated transformations.

– Implicit• e.g. f (x,y,z) = 0

– Parametric• Express value of each spatial variable in terms of independent variables (the

parameters)• e.g. for parameters u and w in 3D:

x = x (u,w)y = y (u,w)z = z (u,w)

source: Mortensonsource: Mortenson

Page 3: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Explicit Form• Value of dependent

variable in terms of independent variables– e.g. z = f (x,y)

• Axis-dependent• Can be hard to

represent a transformed and bounded surface.

• Sample surface-fitting procedure: determine aij coefficients from data points:

m

i

n

j

iiij yxayxz

0 0

),(

source: Mortensonsource: Mortenson

Page 4: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Implicit Form• General form: f (x,y,z) = 0

– f (x,y,z) is polynomial in x, y, z such that:

• Axis-dependent• Examples:

– Plane: Equation is linear in all its variables. – Quadric: Second-degree equation.

• Can represent using vectors, scalars and a type identifier.

– Right circular cylinder» One vector gives a point on its axis» One vector defines axis direction» Scalar gives radius

• Type testing requires robust floating-point computations.

kji

kjiijk zyxa

,,0

source: Mortensonsource: Mortenson

Page 5: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Implicit Form: Quadric Surfaces (continued)

• Type testing:

source: Mortensonsource: Mortenson

• Insert equations from p. 181

Page 6: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Implicit Form: Quadric Surfaces (continued)

• Classification:

source: Mortensonsource: Mortenson

• Insert scanned Table 6.1 from p. 181

Page 7: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Implicit Form: Quadric Surfaces (continued)

• Quadric Surfaces of Revolution:– Rotate conic curve about its axis– Canonical position:

• Center or vertex at origin• Axes of symmetry coincide with

coordinate axes.

source: Mortensonsource: Mortenson

• Insert scanned Table 6.2 from p. 183

Page 8: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Parametric Form

• Express value of each spatial variable in terms of independent variables (the parameters)– e.g. for parameters u, w in

3D:x = x (u,w)y = y (u,w)z = z (u,w)

• For a rectangular surface patch, typically

• Patches can be joined to

form composite parametric surfaces.

]1,0[, wu

source: Mortensonsource: Mortenson

Page 9: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Parametric Form (continued)

• Sample patch: rectangular segment of x, y plane

x = (c - a)u + a

y = (d - b)w + b

z = 0

• Here:– Curves of constant w

are horizontal lines.– Curves of constant u

are vertical lines.

source: Mortensonsource: Mortenson

Page 10: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Parametric Form (continued)

• Parametric sphere of radius r, centered on (x0,y0,z0):

2,0 ,

2,

2 wheresinsincoscoscos 000

wuurzzwuryywurxx

source: Mortensonsource: Mortenson

Page 11: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Parametric Form (continued)

• Parametric ellipsoid centered on (x0,y0,z0):

2,0 ,

2,

2 wheresinsincoscoscos 000

wuuczzwubyywuaxx

source: Mortensonsource: Mortenson

Page 12: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Parametric Form (continued)

• Parametric surface of revolution:

2,0 ,]1,0[ where)(sin)(cos)( wuuzzwuxywuxx

partial view

source: Mortensonsource: Mortenson

Page 13: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

4 Typical Types of Parametric Curves

• Interpolating– Curve passes through all control points.

• Hermite– Defined by its 2 endpoints and tangent vectors at endpoints.– Interpolates all its control points.– Not invariant under affine transformations.– Special case of Bezier and B-Spline.

• Bezier– Interpolates first and last control points.– Curve is tangent to first and last segments of control polygon.– Easy to subdivide.– Curve segment lies within convex hull of control polygon.– Variation-diminishing.– Special case of B-spline.

• B-Spline– Not guaranteed to interpolate control points.– Invariant under affine transformations.– Curve segment lies within convex hull of control polygon.– Variation-diminishing.– Greater local control than Bezier.

Control points influence curve shape.

source: Mortenson, source: Mortenson, AngelAngel

Page 14: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Interpolating

• Interpolates all control points.• Geometric form:

• Rarely used due to lack of derivative continuity at curve segment join points.

source: Angelsource: Angel

n

iii ubu

0

)()( pp

cubic case with equally spaced parameter values

Page 15: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Hermite

• Geometric form (cubic case):

• Hermite curves can provide C1 continuity at curve segment join points.

234

233

232

231

)(

2)(

32)(

132)(

uuuF

uuuuF

uuuF

uuuF

source: Mortensonsource: Mortenson

14031201 )()()()()( uu uFuFuFuFu ppppp

Page 16: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

Bezier• Geometric form (cubic case):

• Bezier curves can provide C1 continuity at curve segment join points.

n

iini uBu

0, )()( pp

source: Mortensonsource: Mortenson

inini uu

i

nuB

)1()(,

Bernstein polynomials.

n+1 = number of control points = degree + 1

Adding a control point elevates degree by 1.

Convex combination, so Bezier curve points all lie within convex hull of control polygon.

n

ini uB

0, 1)(

Rational form is invariant under perspective transformation:where hi are projective space coordinates (weights)

n

inii

n

iinii

uBh

uBhu

0,

0,

)(

)()(

pp

Page 17: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.

B-Spline

n

iiKi uNu

0, )()( pp

otherwise 0)(

if 1)(

1,

11,

uN

tutuN

i

iii

• Geometric form (non-uniform, non-rational case), where K controls degree (K -1) of basis functions:

• Cubic B-splines can provide C2 continuity at curve segment join points.

Convex combination, so B-spline curve points all lie within convex hull of control polygon.

n

iKi uN

0, 1)(

Rational form (NURBS) is invariant under perspective transformation, where hi are projective space coordinates (weights).

n

iKii

n

iiKii

uNh

uNhu

0,

0,

)(

)()(

pp

source: Mortensonsource: Mortenson

1

1,1

1

1,,

)()()()()(

iki

kiki

iki

kiiki tt

uNut

tt

uNtuuN

ti are knot values that relate u to the control points.

Uniform case: space knots at equal intervals of u.

Repeated knots move curve closer to control points.

N

N

N N

N

N N

N N

Page 18: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Page 19: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Page 20: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Page 21: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Page 22: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Page 23: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Page 24: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Page 25: Geometric Modeling 91.580.201 Surfaces Mortenson Chapter 6 and Angel Chapter 9.