Top Banner
Geometric Algebra 2 Quantum Theory Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK
30

Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

Mar 26, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

Geometric Algebra 2Quantum Theory

Chris DoranAstrophysics Group

Cavendish LaboratoryCambridge, UK

Page 2: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 2

Spin• Stern-Gerlach tells us that

electron wavefunction contains two terms

• Describe state in terms of a spinor

• A 2-state system or qubit

S

N

Page 3: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 3

Pauli Matrices• Operators acting on a spinor must obey

angular momentum relations

• Get spin operators

• These form a Clifford algebra• A matrix representation of the geometric

algebra of 3D space

Page 4: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 4

Observables• Want to place Pauli theory in a more

geometric framework with • Construct observables

• Belong to a unit vector• Written in terms of polar coordinates, find

parameterisation

Page 5: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 5

Rotors and Spinors• From work on Euler angles, encode degrees

of freedom in the rotor

• Represent spinor / qubit as element of the even subalgebra:

• Verify that

Keeps result in even algebra

Page 6: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 6

Imaginary Structure• Can construct imaginary action from

• So find that

• Complex structure controlled by a bivector• Acts on the right, so commutes with operators

applied to the left of the spinor• Hints at a geometric substructure• Can always use i to denote the structure

Page 7: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 7

Inner Products• The reverse operation in 3D is same as

Hermitian conjugation• Real part of inner product is

• Follows that full inner product is

• The projection onto the 1 and Iσ3components,

Page 8: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 8

Observables• Spin observables become

• All information contained in the spin vector

• Now define normalised rotor

• Operation of forming an observable reduces to Same as classical

expression

Page 9: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 9

Rotating Spinors• So have a natural ‘explanation’ for 2-sided

construction of quantum observables• Now look at composite rotations

• So rotor transformation law is

• Take angle through to 2π

Sign change for fermions

Page 10: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 10

Unitary Transformations• Spinors can transform under the full unitary

group U(2)• Decomposes into SU(2) and a U(1) term• SU(2) term becomes a rotor on left• U(1) term applied on the right

• Separates out the group structure in a helpful way

• Does all generalise to multiparticle setting

Page 11: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 11

Magnetic Field• Rotor contained in • Use this to Simplify equations• Magnetic field• Schrodinger equation

• Reduces to simple equation

• Magnitude is constant, so left with rotor equation

1/2R

Page 12: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 12

Density Matrices• Mixed states are described by a density

matrix• For a pure state this is

• GA version is• Addition is fine in GA!• General mixed state from sum

Page 13: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 13

Spacetime Algebra• Basic tool for relativistic physics is the

spacetime algebra or STA.

• Generators satisfy

• A matrix-free representation of Dirac theory• Currently used for classical mechanics,

scattering, tunnelling, supersymmetry, gravity and quantum information

1 I I 01231 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar

Page 14: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 14

Relative Space• Determine 3D space relative for observer with

velocity given by timelike vector• Suppose event has position x in natural units

• The basis elements of relative vector are

• Satisfy

0

Page 15: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 15

Relative Split• Split bivectors with to determine relative

split

• Relative vectors generate 3D algebra with same volume element

• Relativistic (Dirac) spinors constructed from full 3D algebra

0

1 i, I i I I

1 i Ii I

Page 16: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 16

Lorentz Transformation• Moving observers

construct a new coordinate grid

• Both position and time coordinates change

Time

Space

Need to re-express this in terms of vector transformations

Page 17: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 17

Frames and Boosts• Vector unaffected by coordinate system, so

• Frame vectors related by

• Introduce the hyperbolic angle

• Transformed vectors now

Exponential of a bivector

Page 18: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 18

Spacetime Rotors• Define the spacetime rotor

• A Lorentz transformation can now be written in rotor form

• Use the tilde for reverse operation in the STA (dagger is frame-dependent)

• Same rotor description as 3D• Far superior to 4X4 matrices!

Page 19: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 19

Pure Boosts• Rotors generate proper orthochronous

transformations• Suppose we want the pure boost from u to v

• Solution is

• Remainder of a general rotor is

A 3D rotor

Page 20: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 20

Velocity and Acceleration• Write arbitrary 4-velocity as

• Acceleration is

• But• So

Pure bivector

Acceleration bivector

Page 21: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 21

The vector derivative• Define the vector derivative operator in the

standard way

• So components of this are directional derivatives

• But now the vector product terms are invertible

• Can construct Green’s functions for• These are Feynman propagators in

spacetime

Page 22: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 22

2 Dimensions• Vector derivative is

• Now introduce the scalar+pseudoscalar field

• Find that

• Same terms that appear in the Cauchy-Riemann equations!

Page 23: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 23

Analytic Functions• Vector derivative closely related to definition

of analytic functions• Statement that is analytic is• Cauchy integral formula provides inverse• This generalises to arbitrary dimensions• Can construct power series in z because

• Lose the commutativity in higher dimensions• But this does not worry us now!

0

Page 24: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 24

Spacetime Vector Derivative• Define spacetime vector derivative

• Has a spacetime split of the form

• First application - Maxwell equations

Page 25: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 25

Maxwell Equations• Assume no magnetisation and polarisation

effects and revert to natural units• Maxwell equations become, in GA form

• Naturally assemble equations for the divergence and (bivector) curl

• Combine using geometric product

Page 26: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 26

STA Form

• Define the field strength (Faraday bivector)

• And current• All 4 Maxwell equations unite into the single

equation

• Spacetime vector derivative is invertible, can carry out first-order propagator theory

• First-order Green’s function for scattering

Page 27: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 27

Application

Page 28: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 28

Lorentz Force Law• Non-relativistic form is

• Can re-express in relativistic form as

• Simplest form is provided by rotor equation

Page 29: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 29

Spin Dynamics• Suppose that a particle carries a spin vector s

along its trajectory

• Simplest form of rotor equation then has

• Non relativistic limit to this equation isEquation for a particle with g=2!

Page 30: Geometric Algebra 2 Quantum Theorycjld1/pages/mit2.pdf · Chris Doran Astrophysics Group Cavendish Laboratory Cambridge, UK. MIT2 2003 2 Spin • Stern-Gerlach tells us that electron

MIT2 2003 30

Exercises• 2 spin-1/2 states are represented by φ and ψ,

with accompanying spin vectors

• Prove that

• Given that

• Prove that