Top Banner
ical Time - really, really, really lon Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the screen for only split second- let each frame represent 100 years. Start movie at present and go back in time. The Declaration of Independence would show up 1/16 of a second into the movie. The Christian era (BC-AD boundary) would be 3/4 of a second into the movie. The most recent Ice Age would be 7 seconds into it. The movie would run about 6 hours before we got to the end of the Mesozoic era (extinction of the dinosaurs). We'd have to watch the movie for about 2 days to see the beginning of the Paleozoic era (macroscopic life). The whole movie (to the beginning of
36

Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Mar 29, 2015

Download

Documents

Dana Chopin
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the screen for only split second- let each frame represent 100 years. Start movie at present and go back in time. •The Declaration of Independence would show up 1/16 of a second into the movie. •The Christian era (BC-AD boundary) would be 3/4 of a second into the movie. •The most recent Ice Age would be 7 seconds into it.•The movie would run about 6 hours before we got to the end of the Mesozoic era (extinction of the dinosaurs).•We'd have to watch the movie for about 2 days to see the beginning of the Paleozoic era (macroscopic life). •The whole movie (to the beginning of geologic time on Earth) would be approximately 16 days long!

Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the screen for only split second- let each frame represent 100 years. Start movie at present and go back in time. •The Declaration of Independence would show up 1/16 of a second into the movie. •The Christian era (BC-AD boundary) would be 3/4 of a second into the movie. •The most recent Ice Age would be 7 seconds into it.•The movie would run about 6 hours before we got to the end of the Mesozoic era (extinction of the dinosaurs).•We'd have to watch the movie for about 2 days to see the beginning of the Paleozoic era (macroscopic life). •The whole movie (to the beginning of geologic time on Earth) would be approximately 16 days long!

Page 2: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 3: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

> Relative: Placing events in asequence based on their positionsin the geologic record.

> Chronologic

sample.

• Two ways to relate time in geology: Two ways to relate time in geology:

> Relative: Placing events in asequence based on their positionsin the geologic record.

> Chronologic: Placing a specific: Placing a specificnumber of years on an event or rocknumber of years on an event or rock

sample.

Geologic TimeGeologic Time

Page 4: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Geologic Time ScaleGeologic Time Scale

•• a combination of the two types of age a combination of the two types of agedeterminationsdeterminations

>> a a relativerelative sequence of lithologic units sequence of lithologic units -- established using logical principles established using logical principles

>> measured against a framework of measured against a framework ofchronologicchronologic dates. dates.

Page 5: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Geologic Time and the "geologic column"• Developed using logical rules to establish relative

sequences of events

- - - -

• refined-

-

Geologic Time and the "geologic column"• Developed using logical rules to establish

relative sequences of events- superposition- cross-cutting relationships- original horizontality - lateral continuity

• Added to as new information is obtained and data is refined

- Use of fossils for correlation and age determination• Numerical Dates attached to strata after the

development of Radiometric techniques-

Still being refined as more informationbecomes available

Page 6: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

The Geologic Time Scale (1:2)The Geologic Time Scale (1:2)

Page 7: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

The Geologic Time Scale (2:2)The Geologic Time Scale (2:2)

Page 8: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Relative Dating MethodsRelative Dating Methods

•• determines the relative sequence of events.determines the relative sequence of events.>> which came first, which came last. which came first, which came last.>> no numeric age assigned no numeric age assigned

•• 6 Relative age principles: 6 Relative age principles: >> SuperpositionSuperposition >> Original Horizontality, Original Horizontality,>> Lateral continuity Lateral continuity > > Cross-cutting RelationshipsCross-cutting Relationships>> Inclusions Inclusions >> Fossil succession. Fossil succession.

Those in yellow are most useful

Page 9: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

History of Historical Geology• Niels Stensen (Nicolaus Steno)

- Fundamental Principles of Relative Time> Principle of Superposition- see below> Principle of Original Horizontality- see below> Principle of Original Lateral Continuity- see below

Page 10: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Law of SuperpositionLaw of Superposition• In undisturbed strata, the layer on the bottom is• In undisturbed strata, the layer on the bottom is

oldest, those above are younger.oldest, those above are younger.

Page 11: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Original HorizontalityOriginal Horizontality

•••• Sediments are generally deposited as Sediments are generally deposited ashorizontal layers.horizontal layers.

Lateral ContinuityLateral Continuity•••• Sediment layers extend laterally in all Sediment layers extend laterally in all

direction until they thin & pinch out asdirection until they thin & pinch out asthey meet the edge of the depositionalbasin. they meet the edge of the depositionalbasin.

Page 12: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

included description and use ofincluded description and use of

Charles Lyell

-

> principles of cross-cutting relationships

> principles of inclusions

• relative time tools

Charles Lyell

• 1st Principles of Geology text1st Principles of Geology text

-

> principles of cross-cutting relationships> principles of inclusions

• relative time tools

Page 13: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Cross-cutting RelationshipsCross-cutting Relationships

That which cuts through is younger than the Object that is cut

dike cuts through

granite is cut

Page 14: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Relative Ages of Lava Flows and SillsRelative Ages of Lava Flows and Sills

Page 15: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Principle of InclusionsPrinciple of Inclusions• Inclusions (one rock type contained in another rock type) are

older than the rock they are embedded in. That is, the younger rock contains the inclusions

Page 16: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Principle of InclusionsPrinciple of Inclusions

Page 17: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Faunal/Floral Succession•• Fossil assemblages (groupings of fossils) Fossil assemblages (groupings of fossils)

succeed one another through time.succeed one another through time.

Page 18: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

- - - -

- -

- -

• Correlation-• Correlation-relating rocks in one location to those inrelating rocks in one location to those in

another using relative age stratigraphicanother using relative age stratigraphicprinciplesprinciples

- - Superposition Superposition - -

Lateral Continuity Lateral Continuity - -

Faunal SuccessionFaunal Succession

- - Cross-cuttingCross-cutting

Page 19: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

••UnconformitiesUnconformities

surfacessurfacesrepresent a long time.represent a long time.

a time when rocks were not a time when rocks were notdeposited or deposited or a time when rocks were a time when rocks were

eroded eroded

HiatusHiatusthe gap in time represented the gap in time represented in the rocks by an uncon-in the rocks by an uncon-formity formity

3 kinds3 kinds Angular Unconformity Angular Unconformity Nonconformity Nonconformity Disconformity Disconformity

Page 20: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

DisconformitiesDisconformities A surface of erosion or non-deposition between A surface of erosion or non-deposition betweenParallel sedimentary rock bedsParallel sedimentary rock beds of differing ages.

Page 21: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Angular UnconformitiesAngular Unconformities• An angular unconformity is an erosional surface on tilted

or folded strata, over which younger strata have been deposited.

Page 22: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

NonconformitiesNonconformitiesA nonconformity is an erosional surface on igneous or

metamorphic rocks which are overlain by sedimentary rocks.

Page 23: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Breakout in to groups and discuss the sequence observed here

Page 24: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Age Estimates of EarthAge Estimates of Earth Counting lifetimes in the Bible Counting lifetimes in the Bible

Comparing cooling rates of iron pellets. Comparing cooling rates of iron pellets.

Determine sedimentation rates & compare Determine sedimentation rates & compare

Estimate age based on salinity of the ocean. Estimate age based on salinity of the ocean.

all age estimates were off by billions of years some were more off than others! some were more off than others!

Page 25: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

>

+

Absolute Dating MethodsAbsolute Dating MethodsRadioactiveRadioactive Decay sequencesDecay sequences acts as an atomic clock acts as an atomic clock

we see the clock at the end of its cyclewe see the clock at the end of its cycle

analogous to starting a stopwatchanalogous to starting a stopwatch

allows assignment of numerical dates to allows assignment of numerical dates torocks.rocks.

>

+

decaydecay) into) into Radioactive isotopes change ( Radioactive isotopes change (daughter isotopes at known rates.daughter isotopes at known rates.

rates vary with the isotoperates vary with the isotope

e.g., U , K , C, etc. e.g., U , K , C, etc. 235235 4040 1414

Page 26: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

DecayDecay unstable nuclei in parent isotope emits unstable nuclei in parent isotope emitssubatomic particles and transform intosubatomic particles and transform intoanother isotopic element (daughter).another isotopic element (daughter).

does so at a known rate, measured in thedoes so at a known rate, measured in thelablab

Half-lifeHalf-life The amount of time needed for one-half of a The amount of time needed for one-half of a

radioactive parent to decay into daughterradioactive parent to decay into daughterisotope.isotope.

Assumptions?-you bet

Cross-checks ensure validity of method.

Assumptions?-you bet

Cross-checks ensure validity of method.

Page 27: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Rate of DecayRate of Decaytt00

tt 11

tt 33

All atoms are parent isotope or someAll atoms are parent isotope or someknown ratio of parent to daughterknown ratio of parent to daughter

1 half-life period has elapsed, half of the1 half-life period has elapsed, half of thematerial has changed to a daughtermaterial has changed to a daughterisotope (6 parent: 6 daughter)isotope (6 parent: 6 daughter)

tt222 half-lives elapsed, half of the parent2 half-lives elapsed, half of the parentremaining is transformed into a daughterremaining is transformed into a daughterisotope (3 parent: 9 daughter)isotope (3 parent: 9 daughter)

3 half-lives elapsed, half of the parent3 half-lives elapsed, half of the parentremaining is transformed into a daughterremaining is transformed into a daughterisotope (1.5 parent: 10.5 daughter)isotope (1.5 parent: 10.5 daughter)

We would see the rock at this point.We would see the rock at this point.

Page 28: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Radioactive Isotopes

• analogous to sand in an hour glass- we measure how much sand there is

> represents the mass of elements- we measure the ratio of sand in the bottom to sand in the top - at the end (present)

> daughter (b) and parent (t)- we know at what rate the sand falls into the bottom

> the half life of the radioactive element- how long would it take to get the amount sand in the observed

ratio starting with all of it in the top?

Radioactive Isotopes

• analogous to sand in an hour glass- we measure how much sand there is

> represents the mass of elements- we measure the ratio of sand in the bottom to sand in the top - at the end (present)

> daughter (b) and parent (t)- we know at what rate the sand falls into the bottom

> the half life of the radioactive element- how long would it take to get the amount sand in the observed

ratio starting with all of it in the top?

50

100

2513

time----------->

ParentDaughterParentDaughter

% p

aren

t rem

aini

ng

Page 29: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Five Radioactive Isotope PairsFive Radioactive Isotope Pairs

Half-LifeEffective Minerals and

Isotopes of ParentDating Range

Rocks That Can Parent Daughter

(Years)Be Dated

Uranium 238 Lead 206 4.5 billion 10 million to Zircon 4.6 billion UraniniteUranium 235 Lead 207 704 million Thorium 232 Lead 208 14 billion 48.8 billion

Rubidium 87 Strontium 87 4.6 billion 10 million to

Muscovite

Biotite

Potassium feldspar

Whole metamorphic

or igneous rock

Potassium 40 Argon 40 1.3 billion 100,000 to Glauconite 4.6 billion Muscovite Biotite Hornblende Whole volcanic rock

(Years)

4.6 billion

Page 30: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Radiocarbon and Tree-Ring Dating Methods• Carbon-14 dating is based on theratio of C-14 to C-12sample.

> Valid only for samples less than 70,000years old.

> Living things take in both isotopes ofcarbon.

> When the organism dies, the "clock" starts.

• Carbon-14 dating is based on theratio of C-14 to C-12 in an organicsample.

> Valid only for samples less than 70,000years old.

> Living things take in both isotopes ofcarbon.

> When the organism dies, the "clock" starts.

Method can be validated by cross-checking with tree ringsMethod can be validated by cross-checking with tree rings

Page 31: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Carbon 14 CycleCarbon 14 Cycle

Page 32: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Recognizing Patterns of changeRecognizing Patterns of change

Walther's LawWalther's Law• • The vertical sequence is repeated by the horizontalThe vertical sequence is repeated by the horizontalsequencesequence

- - walking from A to B to C to the Coast you would encounter thewalking from A to B to C to the Coast you would encounter therocks that would be encountered by drilling a core into therocks that would be encountered by drilling a core into the

earth at any point (A, B, or C)earth at any point (A, B, or C)

Page 33: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Facies DiagramFacies Diagram• • distribution of lithofacies (rock-types)distribution of lithofacies (rock-types)

- - these are associated with their respective EODthese are associated with their respective EOD

• • biofacies are similar but refer to fossils rather thanbiofacies are similar but refer to fossils rather thanrock typesrock types

Page 34: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Eustasy, relative sea-level, and relative positionof lithofacies

• Eustasy= changes in volume of water in ocean• lithofacies depend on

- sea-level

- land level

- geometry of coast

- sediment supply

Vail Curve• an attempt at global• correlation oflithologies

- for better production

- of petroleum resources

Page 35: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Rock designationsRock designations• • Rock units called Lithostratigraphic unitsRock units called Lithostratigraphic units

- - described in terms of Group, Formation, & Memberdescribed in terms of Group, Formation, & Member> > each term has specific meanings in geological parlanceeach term has specific meanings in geological parlance

• • Formation Formation - - a mappable lithostratigraphic unita mappable lithostratigraphic unit

> > has a location for identifying the type-sectionhas a location for identifying the type-section> > has a rock designation describing the lithologyhas a rock designation describing the lithology

- - sometimes not all the same lithologysometimes not all the same lithology> > in which case the term "Formation" takes the place of lithologicin which case the term "Formation" takes the place of lithologic

typetype

• • Groups are composed of several formationsGroups are composed of several formations• • Members are distinctive units within a formationMembers are distinctive units within a formation

- - group is largest and contains formations and membersgroup is largest and contains formations and members- - formations are next and contain membersformations are next and contain members

Rock designationsRock designations• • Rock units called Lithostratigraphic unitsRock units called Lithostratigraphic units

- - described in terms of Group, Formation, & Memberdescribed in terms of Group, Formation, & Member> > each term has specific meanings in geological parlanceeach term has specific meanings in geological parlance

• • Formation Formation - - a mappable lithostratigraphic unita mappable lithostratigraphic unit

> > has a location for identifying the type-sectionhas a location for identifying the type-section> > has a rock designation describing the lithologyhas a rock designation describing the lithology

- - sometimes not all the same lithologysometimes not all the same lithology> > in which case the term "Formation" takes the place of lithologicin which case the term "Formation" takes the place of lithologic

typetype

• • Groups are composed of several formationsGroups are composed of several formations• • Members are distinctive units within a formationMembers are distinctive units within a formation

- - group is largest and contains formations and membersgroup is largest and contains formations and members- - formations are next and contain membersformations are next and contain members

Page 36: Geological Time - really, really, really long! Motion pictures are generally projected at 32 frames per second. Therefore, each frame (image) is on the.

Fundamental lithological units

Formation- a rock layer with distinctive characteristics that is mappable over a large are at “typical” map scales

1:62,500 or more commonly 1:24,000

Formations have Members

smaller layers that are unique that are not mappable over larger areas and won’t show up at typical map scales

Fundamental lithological units

Formation- a rock layer with distinctive characteristics that is mappable over a large are at “typical” map scales

1:62,500 or more commonly 1:24,000

Formations have Members

smaller layers that are unique that are not mappable over larger areas and won’t show up at typical map scales

Groups have formations; formations have membersGroups have formations; formations have members