Top Banner
“Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005
22

“Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Dec 16, 2015

Download

Documents

Patience Cable
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

“Geodetic and geodynamical research in the Institute of Astronomy, RAS”

S.K.Tatevian

Warsaw, CBK November 3, 2005

Page 2: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.
Page 3: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Trend (mm/year)Station Time periodLatitude Longitude Height

ARTU 1999.5 – 2003.3 5.25 0.07 25.70 0.08 -1.42 0.30

BILI 1999.6 – 2003.3 -20.95 0.11 8.18 0.09 -1.26 0.20

IRKT 1996.0 – 2003.3 - 8.00 0.05 24.93 0.06 0.60 0.10

KSTU 1997.6 – 2002.0 - 5.9- 0.14 18.1 0.40 0.61 0.12

MAGO 1997.8 – 2003.3 -20.90 0.07 9.93 0.07 - 0.70 0.13

MDVO 1996.0 – 2003.1 10.82 0.05 22.87 0.05 - 0.18 0.15

MOBN 2001.3 – 2004.0 10.53 0.09 23.48 0.13 - 3.30 0.80

NRIL 2000.7 – 2003.3 - 3.38 0.11 22.15 0.14 1.42 0.48

NVSK 2000.5 – 2003.3 - 1.95 0.14 24 01 0.21 1.04 0.76

PETR 1998.7 – 2004.0 - 8.61 007 - 5.40 0.08 - 0.88 0.17

TIXI 1998.7 – 2003.3 -12.21 0.08 16.83 0.08 0.31 0.20

YAKT 2001.1 – 2004.0 -14.92 0 14 22.65 0 18 - 1.71 0.41

YSSK 1999.5 – 2004.0 -15.27 0.08 12.06 0.07 0.36 0 17

ZECK 1997.0 – 2003.3 10.69 0.05 26.42 0.06 3.31 014

ZWEN 1996.0 – 2003.1 9.70 0.10 23.81 0.09 - 0.79 0.12

Velocities of the IGS (Russian) sites (INASAN / GIPSY OASIS)

Page 4: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.
Page 5: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.
Page 6: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.
Page 7: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Тable 2. Annual and semiannual amplitudes and phases of the Geocenter variations.( GPS and DORIS data for 1993.0-2003.8; SLR for 1992.8-2000.2)

Annual Semiannual TrendTechnique.

A, mm Phase0 A, mm Phase0. mm/year

DORIS(INASAN)

5.60.6 33.81.1 2.40.3 341.212.1 -1.10.1

DORIS(IGN/J PL)

5.50.3 106.65.2 1.30.2 160.422.0 -1.70.1

GPS 2.40.1 304.411.0 18.50.3 356.41.1 -0.30.1X

SLR 3.30.5 16.34.9 1.20.5 2011.2 -0.20.1

DORIS(INASAN)

4.10.3 278.26.1 1.00.1 123.630.6 -0.40.1

DORIS(IGN/J PL)

4.20.3 339.28.4 7.00.5 187.53.4 -0.80.1

GPS 5.90.2 279.43.0 1.50.2 169.511.9 -2.20.1Y

SLR 5.50.5 197.42.7 1.20.4 6.016.8 0.60.1

DORIS(INASAN)

22.83.2 230.10.7 15.42.1 176.28.9 1.80.6

DORIS(IGN/J PL)

11.60.1 316.619.2 6.62.7 178.724.4 1.70.7

GPS 17.30.4 107.62.8 8.20.2 120.76.4 4.80.2Z

SLR 3.50.5 82.96.8 2.10.6 194.59.4 1.20.2

Page 8: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Spectral signature of geocenter motion observed with DORIS and expected from geophysical data. Colour code: light blue: ignwd03; blue: ignwd05; pink: ina04wd01; brown: lcamd02; green: geophysical. A slope equal to -1 is the signature of white noise

(from the report of the IDS center).

Page 9: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.
Page 10: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.
Page 11: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.
Page 12: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

МОСКВ А

Р ИГА

МИНСК

В ИЛ Ь НЮС

Т А Л Л ИН

Х Е Л Ь СИНКИ

В А Р ША В А

КИЕ В

Б Е Р Л ИН

ОСЛ О

КОПЕ НГА ГЕ Н

СТ ОКГОЛ Ь М

КИШЕ НЕ В

Т Б ИЛ ИСИ

Е Р Е В А Н

Б А КУ

УЛ А Н-Б А Т ОР

Т ОКИО

Ростов-на-Дону

Там ань

Анапа

Туапсе

Астрахань

Артезиан

Орел

Краснодар

Ейск

Новопокровская

Зеленчук Элиста

Чкаловский

Зим овники

Волгоград

Верх. Баскунчак

Чернышевский

Кам енск -Шахтинский

Казанская

М ихайловка

Петров Вал

Александров Гай

Ершов

Саратов

Сызрань

Сам ара

Ртищ ево Пенза Ульяновск

Саранск

Сасово

Там бовВоронеж

Ровенки

Белгород

Поворино

КурскКоренево

Елец

Тула

Рязань

Унеча Давыдово

См оленск

Гагарин

ЦНИИГАиК

Тверь

Вел. Луки

Псков

Новгород

Бологое

Ярославль

Кинешм аВладим ир

Ниж. Новгород

М уром

Пильна

Казань

М ураши

Яранск

Ветлуга

Котлас

ХаровскВесьегонск

Вытегра

Пикалево

Пулково

Светлое

Плесецк

Архангельск

Кем ь

М урм анск

Алакуртти

Екатеринбург

Нелидово

Чухлом а

Лахколам ен

Октябрьский

Буденовск

Норильск

Хатанга

Тура

М ирный

Чита

Иркутск

Красноярск

Кызыл

БодайбоНерюнгри

Якутск

Тикси

Чокурдах

Усть-Нера

Аян

Хабаровск

Южно-Сахалинск

Владивосток

М агадан

Петропавловск -Кам чатский

М арково

Анадырь

Певек

Ставрополь

Пятигорск

Калининград

Алдан

Бол. Невер

Эким чан

Известковый

Ургал 1

М аксим овка

См ирных

Николаевск -на-Ам уре

Пожарское

Веселый Яр

Олёкм инск

Вилюйск

Оленёк Жиганск

Саскылах

Батагай

Среднеколым ск

Охотск

Зея

Хандыга

Эвенск

Сейм чан

Пущ ино

Усть-Большерецк

Кресты

Оха

Ноглики

Ильинский

Киевка

Краскино

Турий Рог

Чум икан

Улан-Удэ

Северобайкальск

М огоча

Борзя

Кыра

Новая Чара

Спицино

Билибино

Новосибирск

Сов. Гавань

Полины Осипенко

Свободный

Транспортный

Тюм ень

Курган

Челябинск

Яр

Агрыз

Набережные Челны

Бугульм а

Юксеево

Серов

Уф а

Оренбург

Орск

Карталы

М еждуреченск

Ханты-М ансийск

Голышм аново

Тобольск

Ом ск

Северное

Карасук

Бийск

Новокузнецк

Усть - Кокса

Кызыл-М ажалык

Абакан

М ариинскТайшет

М онды

Зим а

Братск

Усть-Кут

КачугУсть-Баргузин

Багдарин

Колпашево

Нижневартовск

Ноябрьск

Красноуф им ск

Верх. Кривого

Сегозеро

Калевала

Перм ь

Воркута

Нарьян-М ар

Советский

Туруханск

Нижнешадрино

Байкит

Верх. Тойм а

Сыктывкар

М езень

ВенденгаСыня

Войвож

Ам дерм а

Салехард

Нов. Уренгой

Верхнеим батск

Тутончаны

Ванавара

Енисейск

Святой Нос

о. Сим ушир

о. Итуруп

НикольскоеДиксон

Северо-Курильск

м ыс Челюскин

Северный

о. Колгуев

м . М еньшикова

Усть-Цильм а

Сочи

М ахачкала

Лагань

Зем ля Франци Иосиф а

о-в Октябрьской Революции

м ыс Святой Нос

м ыс Шм идта

216 пунктов из них ФАГС 34 и 182 ВГС

Схема сети пунктов ФАГС и ВГС

Page 13: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Meansea-level along the coastline of the North-Polar and Pacific oceans (Baltic vertical datum)

-140

-120

-100

-80

-60

-40

-20

0

0 2000 4000 6000 8000 10000 12000 14000

Distances along the coastline (km)

se

a-l

ev

el i

n c

m

Barentsovo sea

Laptevykh seaChukotskoe

sea

Beringovo sea

Okhotsk sea

Japan sea

Pec

heng

a

Dix

on Tix

i

Am

barc

hik

Pev

ek

Pro

vide

niya

Nag

aeva

Nic

olae

vsk

na A

mur

e

Vla

divo

stok

East-Sibirian sea

Page 14: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

To avoid a dependence of the height system of the fundamental network from sea level fluctuations at

the reference point, the following method, based on the joint analysis of GPS/GLONASS measurements

and gravimetric data, is proposed.

The main idea of this approach may be described as follows. There is no fixed origin of the height system. It

is accepted that normal height H is equal to zero at that point of the Earth‘s physical surface, where the

real value of geopotential W0 is equal to the normal one (U0) at the surface of the general Earth’s ellipsoid.

In principle, the position of that point could be not known at all. Parameters of the general ellipsoid are

submitted to the condition:

0d , where are the quasigeoid heights, obtained by gravimetric data

(Bursha et al.,1998) over the entire surface of the Earth.

The height system is determined by the total combination of geodetic points of the network. For every i-

point of the reference network the geodetic height HG relative to the reference ellipsoid (for GPS that is

WGS-84 ellipsoid with a=6378137m) is determined by the use of GPS/GLONASS measurements and

the normal height H is estimated by the geometric levelling in the regional reference system (the

Crownstadt height system for Russia). At these points an equality of the geodetic heights HG and the

heights, obtained as a sum of quasigeoid height and a normal height H , should be achieved.

Page 15: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

For every i-point of the reference network the geodetic height HG relative to the reference ellipsoid (for GPS that is WGS-84 ellipsoid with a=6378137m) is determined by the use of GPS/GLONASS measurements and the normal height H is estimated by the geometric leveling in the regional reference system (the Crownstadt height system for Russia). At these points an equality of the geodetic heights HG and the heights, obtained as a sum of quasigeoid height and a normal height H , should be achieved. Then we can write the next equations: (1)

where is a quasigeoid height, ae – estimated correction to the semimajor axis of the WGS-84 reference ellipsoid relative to the general Earth ellipsoid, H

i - an estimated correction to the regional system of normal heights

relative to the general Earth’s ellipsoid.

The joint solution of the unlinear equations (1) for all ground sites, where the given set of measurements is available, will enable to estimate corrections to the national and to continental systems of normal heights and to determine the corrections to the semiaxis of the general Earth ellipsoid. The surface of the general Earth ellipsoid and its potential U0, considered like a normal one, determines the height reference system.

ieiiGi HaHH

Page 16: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

The diagram of differences between quasigeoid heights, estimated only by the EGM-96 gravity model, and quasigeoid heights, obtained with the use of mean gravity anomalies by trapeziums 5’7.5’ in central zone. The residuals are at the level of 0.4-0.5 m.

Профиль разностей высот квазигеоида, вычисленный по детальным гравиметрическим данным и параметрам модели EGM-96 для

территории России по 60 параллели

-1,5

-1,0

-0,5

0,0

0,5

1,0

35 50 65 80 95 110 125 140 155

Долгота

Раз

ност

и (м

)

A profile of differences of quasigeoid heights, estimated by the EGM-96 gravity model and by the detailed gravimetric data, along the 60o

parallel of Russian territory

Longitude

Diffr.

Page 17: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

МОСКВА

РИГА

МИНСК

ВИЛЬНЮС

ТАЛЛИН

ХЕЛЬСИНКИ

ВАРШАВА

КИЕВ

СТОКГОЛЬМ

КИШЕНЕВ

Р остов-на-Дону

Тамань

А напа

Туапсе

А страхань

А ртезиан

Орел

К раснод ар

Е йск

Новопокровская

Зеленчук Элиста

Ч каловский

Зимовники

В олгоград

В ерх . Б аскунчак

Ч ерныш евский

К аменск-Шахтинский

К азанская

М ихайловка

Петров В ал

А лександ ров Гай

Е рш ов

СаратовСызрань

Самара

Р тищ ево Пенза Ульяновск

Саранск

Сасово

ТамбовВ оронеж

Р овенки

Б елгород

Поворино

К урскК оренево

Е лец

Тула

Р язань

Унеча Давыд ово

Смоленск

Гагарин

Ц НИИГА иК

Тверь

В ел. Л уки

Псков

Новгород

Б ологое

Ярославль

К инеш маВ лад имир

Ниж . Новгород

М уром

Пильна

К азань

Яранск

В етлуга

ХаровскВ есьегонск

В ытеграПикалево

Пулково

Светлое

Плесецк

К емь

А лакуртти

Нелид ово

Ч ухлома

Л ахколамен

Б уд еновск

Ставрополь

Пятигорск

К алининград

А грыз

Набереж ные Ч елны

А бд улино

Оренбург

Орск

Сегозеро

К алевала

-60-50

-50

-40-40

-30-30-20

-20

-100

10

20

20

30

30

40

40

5060

7080

90100

110120

-40

-30

-10

0

10

Isolines of corrections for transformation to the global system of normal heights

(European network)

Isolines of differences between the meanings of quasigeoid heights calculated 1) with the use of gravity models (EGM-95 and GAO-98) and 2) as a difference of an ellipsoidal height, obtained by GPS measurements at the core sites of the network, and a normal height, obtained from the precise leveling.

Page 18: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

The basic gravimetric network (I)

пункты основной гравиметрической сети 1 класса

basic gravimetric sites

main gravimetric sites (I)

Page 19: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Information on the Researches at the Geodynamic Test Area of the United Institute of High Temperatures of the Russian Academy of Sciences ( OIVT RAS)

The main objectives of researches are geodynamic studies of Tien-Shan. These studies are of great social significance and directed to the reconstruction of the up –to-date strained-deformed state of the litosphere. Due to high activity of the endogenous and exogenous geologic processes in Tien-Shan the disasters like earthquakes, slides and oth., are take place. These studies are carried out by the Scientific station of the OIVT RAS at Bishkek with a participation of more than 20 organizations of the USA, Kyrgyzstan and Kazakhstan.

The complex of investigations consists of:1. Monitoring of seismic conditions with the use of 10 telemetric seismostations of the KNET network , located in a region of the Northern Tien Shan. The seismological network KNET has been established in 1991 and is equipped with 10 wideband automatic stations of PASCAL type, working in a real time. Digital data of this network are regularly transmitted to the San-Diego University of California. Studies of the spatial-temporal distribution of earthquake hypocenters are the main objective of this seismic monitoring.2.Studies of recent crustal movements with the use of space geodesy technique and GPS measurements.GPS network in Tien Shan region was established in 1992. Subsequently it was expanded to the Kazakhstan platform and now this network consists of 10 permanent and 355 points of periodic measurements.GPS and seismic data have been also compared with the data of magneto–telluric sounding, and in particular with a geometry of the surface of a crustal conducting stratum, singled out under the Tien Shan. 3. Electro-magnetic monitoring on the base of power current sources with the use of sounding methods at the distant and at the nearest zones for the purpose of deformation processes studies at the depths till 25 km. 4. Studies of the depth structure of the Earth’s crust and upper mantle of Tien Shan. For this purpose Magneto-Telluric Sounding (MTS), including regional profiles, running across Tien Shan, and detailed sounding at the recent active faults, are carried out. Observations with the use of American low frequency equipment LIMS have been carried out at 20 points, that allowed to increase the depth of investigations till 120-140 km and to study of the upper mantle structure peculiarities.

Page 20: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

CRDF RQ1-2239

Studies and Predictions of the Volcano ELBRUS Behavior.

1. Geophysical investigations:- determination of positions and dimensions of the Mt.Elbrus and Shasta's magma-chambers on the base of analysis of gravity and magnetic surveys and stationary earth tide gravity and tilt observations;- investigation of the dynamics of the magmatic chamber evolution on the base of repeated absolute and relative gravity and GPS-observations (determination of vertical and horizontal speed of the Earth's crust blocks displacement along the selected profiles)

2. Geodetic investigations including GPS-measurements. We expect that if magma-chamber exists under the volcano, the dynamics of its evolution ("upwelling" or "sinking") could be fixed by systematic GPS - observations. Data on velocities of the uplift derived with a help of GPS-observations will be compared with the results of repeated highly accurate absolute and relative gravity observations and this will permit to specify the uplift mechanism which related to specify the uplift mechanism which related to evolution of magma-chamber.

Based on these investigations the formation history of volcanos Elbrus, Shasta, Lassen (CAUCASUS area) would be reconstructed; the features of chemical composition, evolution and petrogenesis of the lavas which make up the volcanic centres would be revealed; the forecasting pattern of volcanic eruption will be given.

Russian team of this Project will be represented by the Laboratory of Petrology of the IGEM; RAS, and by the local Geologic survey expedition ( Essentuki).

Page 21: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Тектонические блоки Евразийской плиты по спутниковым данным

Page 22: “Geodetic and geodynamical research in the Institute of Astronomy, RAS” S.K.Tatevian Warsaw, CBK November 3, 2005.

Гипотетическое представление о вращении континента