Top Banner
Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston
50

Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Dec 19, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Genetic Theory

Manuel AR Ferreira

Egmond, 2007

Massachusetts General HospitalHarvard Medical School

Boston

Page 2: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Outline

1. Aim of this talk

2. Genetic concepts

3. Very basic statistical concepts

4. Biometrical model

Page 3: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

1. Aim of this talk

Page 4: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Gene mapping

LOCALIZE and then IDENTIFY a locus that regulates a trait

Linkage analysis

Association analysis

Page 5: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

If a locus regulates a trait, Trait Variance and Covariance between individuals can be expressed as a function of this locus.

Linkage:

Association:If a locus regulates a trait, Trait Mean in the population can be expressed as a function of this locus.

Page 6: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Revisit common genetic parameters - such as allele frequencies, genetic effects, dominance, variance components, etc

Use these parameters to construct a biometrical genetic model

Model that expresses the:

(1) Mean

(2) Variance

(3) Covariance between individuals

for a quantitative phenotype as a function of the genetic parameters of a given locus.

Page 7: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

2. Genetic concepts

Page 8: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

A. Population level

B. Transmission level

C. Phenotype level

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

GG

G

G

G

G

GG

PP

Allele and genotype frequencies

Mendelian segregationGenetic relatedness

Biometrical modelAdditive and dominance components

Page 9: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

A. Population

level 1. Allele frequencies

A single locus, with two alleles - Biallelic / diallelic - Single nucleotide polymorphism, SNP

Alleles A and a - Frequency of A is p - Frequency of a is q = 1 – p

A a

A a

Every individual inherits two alleles - A genotype is the combination of the two alleles - e.g. AA, aa (the homozygotes) or Aa (the heterozygote)

Page 10: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

A. Population

level 2. Genotype frequencies (Random mating)

A (p) a (q)

A (p)

a (q)

Allele 1A

llele

2 AA (p2)

aA (qp)

Aa (pq)

aa (q2)

Hardy-Weinberg Equilibrium frequencies

P (AA) = p2

P (Aa) = 2pq

P (aa) = q2

p2 + 2pq + q2 = 1

Page 11: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Segregation, Meiosis

Mendel’s law of segregation

A3 (½) A4 (½)

A1 (½)

A2 (½)

Mother (A3A4)

A1A3 (¼)

A2A3 (¼)

A1A4 (¼)

A2A4 (¼)

Gametes

Father (A1A2)

B. Transmission level

Page 12: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

C. Phenotype

level 1. Classical Mendelian traits

Dominant trait (D - presence, R - absence) - AA, Aa D - aa R

Recessive trait (D - absence, R - presence) - AA, Aa D - aa R

Codominant trait (X, Y, Z) - AA X - Aa Y - aa Z

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

GG

G

G

G

G

GG

PP

Page 13: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Dominant Mendelian inheritance

D (½) d (½)

D (½)

d (½)

Mother (Dd)

DD (¼)

dD (¼)

Dd (¼)

dd (¼)

Father (Dd)

C. Phenotype

level

Page 14: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

D (½) d (½)

D (½)

d (½)

Mother (Dd)

DD (¼)

dD (¼)

Dd (¼)

dd (¼)Father (Dd)

Phenocopies

Incomplete penetrance

C. Phenotype

level Dominant Mendelian inheritance (with incomplete penetrance and phenocopies)

Page 15: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Recessive Mendelian inheritance

D (½) d (½)

D (½)

d (½)

Mother (Dd)

DD (¼)

dD (¼)

Dd (¼)

dd (¼)

Father (Dd)

C. Phenotype

level

Page 16: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

2. Quantitative traits

Fra

ctio

n

Histograms by gqt

g==-1

0

.128205

g==0

-3.90647 2.7156g==1

-3.90647 2.7156

0

.128205

Fra

ctio

n

Histograms by gqt

g==-1

0

.128205

g==0

-3.90647 2.7156g==1

-3.90647 2.7156

0

.128205

Fra

ctio

n

Histograms by gqt

g==-1

0

.128205

g==0

-3.90647 2.7156g==1

-3.90647 2.7156

0

.128205

AA

Aa

aa

Fra

ctio

n

qt-3.90647 2.7156

0

.072

C. Phenotype

level

Page 17: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

m

d +a

P(X)

X

AA

Aa

aa

m + a m + dm – a

– a

AAAaaa

Genotypic means

Biometric Model

Genotypic effect

C. Phenotype

level

Page 18: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

3. Very basic statistical

concepts

Page 19: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Mean, variance,

covariance

i

iii

i

xfxn

xXE )(

1. Mean (X)

Page 20: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Mean, variance,

covariance

2. Variance (X)

iii

ii

xfxn

xXEXVar 2

2

2

1)()(

Page 21: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Mean, variance,

covariance

3. Covariance (X,Y)

iiiYiXi

iYiXi

YX

yxfyxn

yxYXEYXCov

,1

),(

Page 22: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

4. Biometrical model

Page 23: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTLBiallelic locus - Genotypes: AA, Aa, aa - Genotype frequencies: p2, 2pq, q2

Alleles at this locus are transmitted from P-O according to Mendel’s law of segregation

Genotypes for this locus influence the expression of a quantitative trait X (i.e. locus is a QTL)

Biometrical genetic model that estimates the contribution of this QTL towards the (1) Mean, (2) Variance and (3) Covariance between individuals for this quantitative trait X

Page 24: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL1. Contribution of the QTL to the Mean (X)

aaAaAAGenotypes

Frequencies, f(x)

Effect, x

p2 2pq q2

a d -a

i

ii xfx

= a(p2) + d(2pq) – a(q2)Mean (X) = a(p-q) + 2pqd

Page 25: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL2. Contribution of the QTL to the Variance (X)

aaAaAAGenotypes

Frequencies, f(x)

Effect, x

p2 2pq q2

a d -a

= (a-m)2p2 + (d-m)22pq + (-a-m)2q2 Var (X)

i

ii xfxVar 2

= VQTL

Broad-sense heritability of X at this locus = VQTL / V Total

Broad-sense total heritability of X = ΣVQTL / V Total

Page 26: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL = (a-m)2p2 + (d-m)22pq + (-a-m)2q2 Var (X)

= 2pq[a+(q-p)d]2 + (2pqd)2

= VAQTL + VDQTL

m

d +a– a

AAaa

Aa

Additive effects: the main effects of individual alleles

Dominance effects: represent the interaction between alleles

d = 0

Page 27: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL = (a-m)2p2 + (d-m)22pq + (-a-m)2q2 Var (X)

= 2pq[a+(q-p)d]2 + (2pqd)2

= VAQTL + VDQTL

m

d +a– a

AAaa

Aa

Additive effects: the main effects of individual alleles

Dominance effects: represent the interaction between alleles

d > 0

Page 28: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL = (a-m)2p2 + (d-m)22pq + (-a-m)2q2 Var (X)

= 2pq[a+(q-p)d]2 + (2pqd)2

= VAQTL + VDQTL

m

d +a– a

AAaa

Aa

Additive effects: the main effects of individual alleles

Dominance effects: represent the interaction between alleles

d < 0

Page 29: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

aa Aa AA

m

-a

ad

Var (X) = Regression Variance + Residual Variance= Additive Variance + Dominance Variance

Page 30: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

PracticalH:\ferreira\biometric\sgene.exe

Page 31: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Practical

Aim Visualize graphically how allele frequencies, genetic effects, dominance, etc, influence trait mean and variance

Ex1a=0, d=0, p=0.4, Residual Variance = 0.04, Scale = 2.Vary a from 0 to 1.

Ex2a=1, d=0, p=0.4, Residual Variance = 0.04, Scale = 2.Vary d from -1 to 1.

Ex3a=1, d=0, p=0.4, Residual Variance = 0.04, Scale = 2.Vary p from 0 to 1.

Look at scatter-plot, histogram and variance components.

Page 32: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Some conclusions

1. Additive genetic variance depends on

allele frequency p

& additive genetic value a

as well as

dominance deviation d

2. Additive genetic variance typically greater than dominance variance

Page 33: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTLVar (X)= 2pq[a+(q-p)d]2 + (2pqd)2

VAQTL + VDQTL

Demonstrate

2A. Average allelic effect

2B. Additive genetic variance

Page 34: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL2A. Average allelic effect (α)

The deviation of the allelic mean from the population mean

a(p-q) + 2pqd

Aaαa αA

? ?Mean (X)

Allele a Allele APopulation

AA Aa aaa d -a

A p q ap+dq q(a+d(q-p))

a p q dp-aq -p(a+d(q-p))

Allelic mean Average allelic effect (α)

1/3

Page 35: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTLDenote the average allelic effects - αA

= q(a+d(q-p)) - αa

= -p(a+d(q-p))

If only two alleles exist, we can define the average effect of allele substitution - α = αA - αa - α = (q-(-p))(a+d(q-p)) = (a+d(q-p))

Therefore: - αA

= qα - αa

= -pα

2/3

Page 36: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL2B. Additive genetic variance

The variance of the average allelic effects

2αA

Additive effect

2A. Average allelic effect (α)

Freq.

AA

Aa

aa

p2

2pq

q2

αA + αa

2αa

= 2qα

= (q-p)α

= -2pα

VAQTL= (2qα)2p2 + ((q-p)α)22pq + (-2pα)2q2

= 2pqα2

= 2pq[a+d(q-p)]2 d = 0, VAQTL= 2pqa2

p = q, VAQTL= ½a2

3/3

αA = qα

αa = -pα

Page 37: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

0

0.07

5

0.15

0.22

5

0.3

0.37

5

0.45

0.52

5

0.6

0.67

5

0.75

0.82

5

0.9

0.97

5

0

0.16

0.32

0.48

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

a

p

d = 0, VAQTL= 2pqa2

VAQTL

Page 38: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.4

0.2

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.4

0.2

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.4

0.2

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.05 0.1 0.2 0.3 0.5

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.4

0.2

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.4

0.2

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.4

0.2

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Allele frequency

Additive genetic variance VA

Dominance genetic variance VD

ad

+1-1

+1

-1

Page 39: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

a

d

-1 0 +1

-1

0

+1

AA Aa aa

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.9-0.8

-0.7-0.6

-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.60.7

0.80.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.9-0.8

-0.7-0.6

-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.60.7

0.80.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.9-0.8

-0.7-0.6

-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.60.7

0.80.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.9-0.8

-0.7-0.6

-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.60.7

0.80.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.9-0.8

-0.7-0.6

-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.60.7

0.80.9

1

-1

-0.8

-0.6

-0.4

-0.2 0

0.2

0.4

0.6

0.8 1

-1

-0.9-0.8

-0.7-0.6

-0.5

-0.4-0.3

-0.2-0.1

0

0.10.2

0.30.4

0.5

0.60.7

0.80.9

1

0.01 0.05 0.1 0.2 0.3 0.5Allele frequency

VA > VD

VA < VD

Page 40: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

2B. Additive genetic variance 2A. Average allelic effect (α)

3. Contribution of the QTL to the Covariance (X,Y)

2. Contribution of the QTL to the Variance (X)

1. Contribution of the QTL to the Mean (X)

Page 41: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

i

iiYiXi yxfyxYXCov ,),(

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m)(-a-m) (-a-m)2

3. Contribution of the QTL to the Cov (X,Y)

Page 42: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

i

iiYiXi yxfyxYXCov ,),(

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m)(-a-m) (-a-m)2

p2

0

0

2pq

0 q2

3A. Contribution of the QTL to the Cov (X,Y) – MZ twins

= (a-m)2p2 + (d-m)22pq + (-a-m)2q2 Cov(X,Y)

= VAQTL + VDQTL

= 2pq[a+(q-p)d]2 + (2pqd)2

Page 43: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m)(-a-m) (-a-m)2

p3

p2q

0

pq

pq2 q3

3B. Contribution of the QTL to the Cov (X,Y) – Parent-Offspring

Page 44: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

• e.g. given an AA father, an AA offspring can come from either AA x AA or AA x Aa parental mating types

AA x AA will occur p2 × p2 = p4

and have AA offspring Prob()=1

AA x Aa will occur p2 × 2pq = 2p3q

and have AA offspring Prob()=0.5

and have Aa offspring Prob()=0.5

Therefore, P(AA father & AA offspring) = p4 + p3q

= p3(p+q)

= p3

Page 45: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m)(-a-m) (-a-m)2

p3

p2q

0

pq

pq2 q3

= (a-m)2p3 + … + (-a-m)2q3 Cov (X,Y)

= ½VAQTL= pq[a+(q-p)d]2

3B. Contribution of the QTL to the Cov (X,Y) – Parent-Offspring

Page 46: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

AA

Aa

aa

AA Aa aa(a-m) (d-m) (-a-m)

(a-m)

(d-m)

(-a-m)

(a-m)2

(a-m)

(-a-m)

(d-m)

(a-m)

(d-m)2

(d-m)(-a-m) (-a-m)2

p4

2p3q

p2q2

4p2q2

2pq3 q4

= (a-m)2p4 + … + (-a-m)2q4 Cov (X,Y)

= 0

3C. Contribution of the QTL to the Cov (X,Y) – Unrelated individuals

Page 47: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model for single biallelic

QTL

Cov (X,Y)

3D. Contribution of the QTL to the Cov (X,Y) – DZ twins and full sibs

¼ genome

¼ (2 alleles) + ½ (1 allele) + ¼ (0 alleles)

MZ twins P-O Unrelateds

¼ genome ¼ genome ¼ genome

# identical alleles inherited

from parents

01(mother)

1(father)

2

= ¼ Cov(MZ) + ½ Cov(P-O) + ¼ Cov(Unrel) = ¼(VAQTL

+VDQTL) + ½ (½ VAQTL

) + ¼

(0) = ½ VAQTL + ¼VDQTL

Page 48: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Summary

Page 49: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

Biometrical model predicts contribution of a QTL to the mean, variance and covariances of a trait

Var (X) = VAQTL + VDQTL

1 QTL

Cov (MZ) = VAQTL + VDQTL

Cov (DZ) = ½VAQTL + ¼VDQTL

On average!

0 or 10, 1/2 or 1 IBD estimation /

Linkage

Page 50: Genetic Theory Manuel AR Ferreira Egmond, 2007 Massachusetts General Hospital Harvard Medical School Boston.

…Biometrical model underlies the variance components estimation performed in Mx, MERLIN, SOLAR, etc..

Var (X) = Σ(VAQTL) + Σ(VDQTL

) = VA + VDMultiple QTL

Cov (MZ)

Cov (DZ)

= Σ(VAQTL) + Σ(VDQTL

) = VA + VD

= Σ(½VAQTL) + Σ(¼VDQTL

) = ½VA +

¼VD