Top Banner
2017/9/24 1 Generalized Predictive Planning for Autonomous Vehicles Scott Pendleton and Marcelo H. Ang Jr. Department of Mechanical Engineering National University of Singapore
41

Generalized Predictive Planning for Autonomous Vehicles

Apr 06, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Generalized Predictive Planning for Autonomous Vehicles

2017/9/24 1

Generalized Predictive Planning for Autonomous Vehicles

Scott Pendleton and Marcelo H. Ang Jr.

Department of Mechanical EngineeringNational University of Singapore

Page 2: Generalized Predictive Planning for Autonomous Vehicles

2

Why Autonomous Vehicles? (Singapore Perspectives)

• Reduce car ownership– Ride sharing, delivery, logistics

• Efficient use of resources– Car, road infrastructure, less parking spaces

• Public transportation– Last mile/first mile problem– Urban driving as opposed to highways

• Improved Productivity & Safety, “greener”

Page 3: Generalized Predictive Planning for Autonomous Vehicles

3

AvailabilityAccessibility

Affordability

Autonomy Ride Sharing

• Multiple vehicle classes: Operational advantages for each vehicle class favor different environments. A combined multi-class service can extend the operational area. True point-to-point service coverage is achievable.

• Disruptive technology: Automation can enable new ways of thinking about automobiles and transportation systems in general. In particular, it can provide affordable, convenient, on-demand mobility.

Autonomous Mobility‐on‐Demand• Vehicle sharing for first-and-last-mile transportation

INTRODUCTION & MOTIVATION

Page 4: Generalized Predictive Planning for Autonomous Vehicles

4

Environments

• Road • Pedestrian

Page 5: Generalized Predictive Planning for Autonomous Vehicles

5

SMART=NUS Fleet

Page 6: Generalized Predictive Planning for Autonomous Vehicles

6

What we can confidently do?• Reactive control with guaranteed safety (lowest layer – always on)

• Mapping and Localization• Local planning

– RRT* variant– POMDP

• Execution & Control– More accurate path following using kinematic constraints

Page 7: Generalized Predictive Planning for Autonomous Vehicles

7

Mobility on Demand using Multi‐Class Autonomous Vehicles

Page 8: Generalized Predictive Planning for Autonomous Vehicles

8

• One North:– Jan 2015 – 6 km route

– Sept 2016 – 12 km route

– 23 June 2017 – 55 km ‐NUS & Science Pk

8

• 9 vehicles– SMART-NUS: 1– Nutonomy: 6 – Delphi : 1– A*STAR: 1

Page 9: Generalized Predictive Planning for Autonomous Vehicles

9

One North – Live Testing

Page 10: Generalized Predictive Planning for Autonomous Vehicles

10

Pedestrian crossing  Signalized Intersection 

Complex intersection Road construction Road construction and jay walking

One North – May 2017

Page 11: Generalized Predictive Planning for Autonomous Vehicles

11

Public Deployment at theChinese & Japanese Gardens (Oct 2014)

‐ Long Term Vehicle Testing

‐ To raise awareness‐ To gain public acceptance

6 Days360 km

500 Visitors220 Trips225 Surveys

98% “would ride again”

Page 12: Generalized Predictive Planning for Autonomous Vehicles

12

Page 13: Generalized Predictive Planning for Autonomous Vehicles

13

our autonomous mobility scooter

Page 14: Generalized Predictive Planning for Autonomous Vehicles

14

Our Planning Framework

• Interface planning modules with perception and control modules

• Incorporate acceleration constraints• Establish replanning timing/retriggering• Safety mechanism design for predictive planning

PREDICTIVE PLANNING FRAMEWORK

Page 15: Generalized Predictive Planning for Autonomous Vehicles

15

Planning Framework OverviewPREDICTIVE PLANNING FRAMEWORK

Page 16: Generalized Predictive Planning for Autonomous Vehicles

16

Planning Framework Overview• Booking System & Mission Planner

• Mobile phone access to webserver for handling mission requests as {Pickup Station, Dropoff Station}

• Dijkstra search over directed graph of reference path segments

• Mapping/Localization• Vertical features extracted from 3D point cloud gathered from 2D LIDAR “rolling window” accumulation over time

• Obstacle Detection• SVM performed over spatio‐temporal features of object clusters from 2D LIDAR

PREDICTIVE PLANNING FRAMEWORK

Page 17: Generalized Predictive Planning for Autonomous Vehicles

17

Planning Framework Overview• Cost Map Generator

• Obstacle avoidance cost set for grid locations in a 3D cost map layered by time dimension, up to a time horizon

• Goal Generator• Goal state set at constant distance ahead along route plan

• Steering Control• Pure‐pursuit steering find constant radius arc target to forward waypoint

• Speed Control• Proportional Integral (PI) controller with switching mechanism for throttle vs. braking

PREDICTIVE PLANNING FRAMEWORK

Page 18: Generalized Predictive Planning for Autonomous Vehicles

18

Trajectory Planner• Control and Path Guided RRT* (CPG‐RRT*)

– Use RG, path guided sample biasing, and min‐jerk edge connection

PREDICTIVE PLANNING FRAMEWORK

• Same structure of RRT*, but redefine subfunctions:– “Nearest” is RG NN search– “SampleFree” uses biasing– “Line” uses an min‐jerk 

profile interpolation along Dubins car paths

– “Steer” and “CollisionFree” are built off the “Line” function

Page 19: Generalized Predictive Planning for Autonomous Vehicles

19

Trajectory Planner: SampleFree

PREDICTIVE PLANNING FRAMEWORK

• Retain previous iteration knowledge by Φi‐1

• Bias toward route plan by Φpp

• SampleGoalfor greedy search

• RG Sample for efficient exploration

Page 20: Generalized Predictive Planning for Autonomous Vehicles

20

Trajectory Planner: Line

PREDICTIVE PLANNING FRAMEWORK

• Controllable trajectory generation to enforce:– Minimum turning radius (Dubins curves)– Velocity bounds– Acceleration bounds

• Edges are min‐jerk optimal for comfort– Minimizes – Known to be 5th degree polynomial for position

• Trajectory defined over Dubins x Velocity x Time– Configuration space 

Page 21: Generalized Predictive Planning for Autonomous Vehicles

21

Trajectory Planner: Line

PREDICTIVE PLANNING FRAMEWORK

• First, solve for Dubins curve in SE(2) space• Then, solve for position, velocity, and acceleration w.r.t time by system of equations for boundary conditions:

• Known: pinit , vinit , ainit , pfinal , vfinal . set afinal = 0• Solve for constants b0 … b5

Page 22: Generalized Predictive Planning for Autonomous Vehicles

22

Trajectory Planner: Line

PREDICTIVE PLANNING FRAMEWORK

• Polynomial solutions found quickly• Bounds checked over time interval at endpoints and roots

Page 23: Generalized Predictive Planning for Autonomous Vehicles

23

Replan Timing

PREDICTIVE PLANNING FRAMEWORK

• Each plans is generated while previous plan is executed

Page 24: Generalized Predictive Planning for Autonomous Vehicles

24

Safety Checking

PREDICTIVE PLANNING FRAMEWORK

• Each solution plan is rechecked against an updated observation before execution

• A new variant of braking Inevitable Collision State (ICSb) is applied for passive safety:– A braking maneuver must exist from the commit state following 

the solution trajectory to satisfy dynamic minimum braking distance

– Otherwise, velocity profile of solution is overridden by constant deceleration profile up to braking distance

• “Clear zone” applied to command stop when obstacles are very close

Page 25: Generalized Predictive Planning for Autonomous Vehicles

25

Control Interfacing

PREDICTIVE PLANNING FRAMEWORK

• Planner must know next commit state as root for plan tree– Control and/or localization error may affect true pose– s1 is expected commit state at end of trajectory Φ0 , but instead 

arrive at s1’– Where to begin plan Φ2? Introduce pose correction factor!– Start plan Φ2 from state s2+ w Δs1 (we use w = 0.5)

Page 26: Generalized Predictive Planning for Autonomous Vehicles

26

Control Interfacing

PREDICTIVE PLANNING FRAMEWORK

• Pose correction in practice:– Red is odometry trace (series of vectors)– Yellow is commit path– Overlap correlates with velocity undershoot, gap for overshoot

Page 27: Generalized Predictive Planning for Autonomous Vehicles

27

Summary: Planning FrameworkPREDICTIVE PLANNING FRAMEWORK

• Predictive planning framework– Real‐time replanning in space‐time

• Trajectory planning algorithm (CPG‐RRT*)– Generates min‐jerk controllable edge connections– Biased sampling for

• Near previous solution trajectory• Near pure pursuit steering trajectory to route plan• Near goal• Reachable configuration space

• Passive safety assurances through adapted braking Inevitable Collison State Avoidance (ICSb)

Page 28: Generalized Predictive Planning for Autonomous Vehicles

28

Software Overview

Fleet Management

System Server

Booking App

Multi-Class Autonomous Vehicles

Users

Onboard Verification

VEHICLE PLATFORM DEVELOPMENT

Page 29: Generalized Predictive Planning for Autonomous Vehicles

29

Software OverviewVEHICLE PLATFORM DEVELOPMENT

Page 30: Generalized Predictive Planning for Autonomous Vehicles

30

Hardware Overview• Common Sensor Suite

• IMU & wheel encoders for odometry• 1 2D LIDAR for Mapping & Localization (M&L) – fuse w/odom

• ≥1 2D LIDAR for Obstacle Detection (OD)• Similar Power Management & Off‐the‐shelf Computers• Ubuntu 14.04, ROS Indigo, i7 processor, 16GB RAM, SSD

• Differing Actuation Mechanisms to Control:• Steering• Braking/Throttle• Gear Selection (Forward/Reverse)

VEHICLE PLATFORM DEVELOPMENT

Page 31: Generalized Predictive Planning for Autonomous Vehicles

31

Hardware OverviewStart with a personal mobility scooter, then add…

VEHICLE PLATFORM DEVELOPMENT

Page 32: Generalized Predictive Planning for Autonomous Vehicles

32

Hardware OverviewStart with a golf car, then add…

VEHICLE PLATFORM DEVELOPMENT

Page 33: Generalized Predictive Planning for Autonomous Vehicles

33

Hardware OverviewStart with a road car, then add…

VEHICLE PLATFORM DEVELOPMENT

Page 34: Generalized Predictive Planning for Autonomous Vehicles

34

Safety Overrides• User Button Controls:• Pause• Auto• Manual

• E‐stops, onboard and remote

• Visualizations onboard show perception data and planned path

• Audio cues for station arrival/departure

VEHICLE PLATFORM DEVELOPMENT

Page 35: Generalized Predictive Planning for Autonomous Vehicles

35

Experiment Setup• Look for positive emergent behaviors• Compare against baseline planning method:

• Decoupled spatial path and velocity planning• Enlarge obstacle bounds forward based on velocity to treat environment as static

• Trigger replanning only when at a stop due to blockage• Test Scenarios:

• Pedestrian navigation• T‐junction• Defensive driving• Overtaking

VEHICLE PLATFORM DEVELOPMENT

Page 36: Generalized Predictive Planning for Autonomous Vehicles

36

Experiment SetupVEHICLE PLATFORM DEVELOPMENT

• Planning visualization

Page 37: Generalized Predictive Planning for Autonomous Vehicles

37

• Video available on YouTube: search “FMAutonomy” channel

Predictive Planning Video

https://youtu.be/eVVGZxp03Hc

EXPERIMENTAL VALIDATION

Page 38: Generalized Predictive Planning for Autonomous Vehicles

38

• Reactive Control – Guaranteed Safety as a Baseline

• Generalize predictive planning– Plans coupled spatial path and velocity– Demonstrated over varied vehicle types and environments in high‐risk scenarios

• Reachability Guidance– Speed improvement by factor of 9‐10

• Predictive Planning Framework– CPG‐RRT* (biased sampling and min‐jerk edges)– Modified ICSb passive safety assurances

What have we achieved?

Page 39: Generalized Predictive Planning for Autonomous Vehicles

39

Towards Mapless Navigation

39

• You are “here” (blue circle)

• Go to #02‐16

• Giving intelligence to robot– To read maps– Navigation to

points in the map

What’s Next?

Page 40: Generalized Predictive Planning for Autonomous Vehicles

40

Learning how to drive• Cars and peoplearound

• Movingdirections

• Relativepositions

• Speeds• IntermediateGoal

40

• Steering• Brake• Throttle

What’s Next?

Page 41: Generalized Predictive Planning for Autonomous Vehicles

41

Marcelo H ANG [email protected]