Top Banner
Obstacles to learning COGNITIVE RESISTANCE TO SCIENTIFIC FACTS AND THEORIES BABIES AS SCIENTISTS? THE DIFFICULT ACQUISITION OF SCIENTIFIC CONCEPTS: CONCEPTUAL CHANGE THE ORIGINS AND DEVELOPMENT OF SCIENTIFIC THINKING: BABIES AS SCIENTISTS?
33

Gdp2 2013 14_3

Jan 14, 2015

Download

Technology

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Gdp2 2013 14_3

Obstacles to learning

COGNITIVE RESISTANCE TO SCIENTIFIC FACTS AND THEORIESBABIES AS SCIENTISTS?

THE DIFFICULT ACQUISITION OF SCIENTIFIC CONCEPTS: CONCEPTUAL CHANGE

THE ORIGINS AND DEVELOPMENT OF SCIENTIFIC THINKING: BABIES AS SCIENTISTS?

Page 2: Gdp2 2013 14_3

Resistance to the theory of evolution

Page 3: Gdp2 2013 14_3

Resistance to scientific knowledge in physics & cosmology

Page 4: Gdp2 2013 14_3

Resistance to scientific knowledge in physics

Page 5: Gdp2 2013 14_3

Resistance to scientific knowledge in physics

Page 6: Gdp2 2013 14_3

Neuromyths

Page 7: Gdp2 2013 14_3

Resistance to scientific knowledge as implied in superstition and pseudo-scientific claims

Page 8: Gdp2 2013 14_3

• Feynman, 1974

During the Middle Ages there were all kinds of crazy ideas, such as that a piece of rhinoceros horn would increase potency… Then a method was discovered for separating the ideas – which was to try one to see if it worked, and if it didn’t work, to eliminate it. This method became organized, of course, into science. And it developed very well, so that we are now in the scientific age. It is such a scientific age, in fact, that we have difficulty in understanding how witch doctors could ever have existed, when nothing that they proposed ever really worked – or very little of it did. But even today I meet lots of people who sooner or later get me into a conversation about UFOs or astrology, or some form of mysticism, expanded consciousness, new types of awareness, ESP, and so forth. And I’ve concluded that it’s not a scientific world. (Feynman, 1974)

Page 9: Gdp2 2013 14_3

Obstacles to learning

COGNITIVE RESISTANCE TO SCIENTIFIC FACTS AND THEORIESBABIES AS SCIENTISTS?

THE DIFFICULT ACQUISITION OF SCIENTIFIC CONCEPTS: CONCEPTUAL CHANGE

THE ORIGINS AND DEVELOPMENT OF SCIENTIFIC THINKING

Page 10: Gdp2 2013 14_3

Scientists in the crib

Observation, experimentation

Curiosity

Core knowledge

Folk knowledge/Naïve representations/Common sense

Several mechanisms, for learning from experience

Page 11: Gdp2 2013 14_3

Core knowledge

Human cognition is founded, in part, on four systems for representing objects, actions, number, and space. It may be based, as well, on a fifth system for representing social partners. Each system has deep roots in human phylogeny and ontogeny, and it guides and shapes the mental lives of adults. Converging research on human infants, non-human primates, children and adults in diverse cultures can aid both understanding of these systems and attempts to overcome their limits.

Objects Actions

Number

Space

Social partners

Page 12: Gdp2 2013 14_3

Folk knowledge/Naïve representations/Common sense

All of us, from the most sophisticated adults to the youngest children, often engage in what is commonly called ‘‘folk science,’’ that is, certain ways of understanding the natural and artificial world that arise more informally and not as direct reflections of formal instruction in scientific principles (Carey, 1988). There is now extensive work on how children and adults have developed folk psychologies (Wellman, 1990), folk physics (Proffitt, 1999; Vosniadou, 2001), and folk biologies (Inagaki & Hatano, 2002), as well as some indications of folk sciences in such areas as the behaviors of materials and substances (folk chemistry; Au, 1994), the behaviors of heavenly bodies (folk cosmology; Siegal, Butterworth, & Newcombe, 2004), and the nature of value transactions (folk economics; Lakshminaryanan, Chen, & Santos, 2008).

Folk physics Folk biology

Folk psychology

Folk socialpsychology

Folk chemistry

Page 13: Gdp2 2013 14_3

The main source of resistance to scientific ideas concerns what children know prior to their exposure to science. The last several decades of developmental psychology has made it abundantly clear that humans do not start off as "blank slates." Rather, even one year-olds possess a rich understanding of both the physical world (a "naïve physics") and the social world (a "naïve psychology"). Babies know that objects are solid, that they persist over time even when they are out of sight, that they fall to the ground if unsuorted, and that they do not move unless acted upon. They also understand that people move autonomously in response to social and physical events, that they act and react in accord with their goals, and that they respond with appropriate emotions to different situations. (Bloom & Weisberg, 2007)

The head start model

Page 14: Gdp2 2013 14_3

These intuitions give children a head start when it comes to understanding and learning about objects and people. But these intuitions also sometimes clash with scientific discoveries about the nature of the world, making certain scientific facts difficult to learn. As Susan Carey once put it, the problem with teaching science to children is "not what the student lacks, but what the student has, namely alternative conceptual frameworks for understanding the phenomena covered by the theories we are trying to teach. (Bloom & Weisberg 2007)

The head start model

Page 15: Gdp2 2013 14_3

Folk knowledge/Naïve representations/Common sense

Without explicit instruction in such areas, people seem to develop domain-specific ways of thinking about relatively bounded sets of phenomena such as the behavior of solid objects, living kinds, and the minds of others. These domain-specific understandings have been referred to as ‘‘intuitive theories’’ or ‘‘naıve theories,’’ on the assumption that they reflect sets of beliefs that cohere in a manner that resembles, in important respects, scientific theories (Carey, 1985; Carey & Spelke, 1996; Slaughter & Gopnik, 1996). (Keil, 2010, p. 826-827).

Page 16: Gdp2 2013 14_3

What are the components of children’s biological-knowledge system before systematic teaching at school? Can this knowledge system be called naive biology? We propose that young children’s biological-knowledge system has at least two essential components—(a) the knowledge needed to identify biological entities and phenomena and (b) teleological and vitalistic causality—and that these components constitute a form of biology. We discuss how this naive biology serves as the basis for per- formance and learning in socially and culturally impor- tant practices, such as health practices and biology instruction. (Inagaki & Hatano 2006, p. 78)

Pre-instructional knowledge in biology

Page 17: Gdp2 2013 14_3

Obstacles to learning

COGNITIVE RESISTANCE TO SCIENTIFIC FACTS AND THEORIESBABIES AS SCIENTISTS?

THE DIFFICULT ACQUISITION OF SCIENTIFIC CONCEPTS: CONCEPTUAL CHANGE

THE ORIGINS AND DEVELOPMENT OF SCIENTIFIC THINKING

Page 18: Gdp2 2013 14_3

Misconceptions & the conceptual change model

All good teachers have always realized that one must start “where the student is.” Since the 1960s, we have come to a completely new understanding of what this means. Back then, it was defined in terms of what the student lacked, and this was seen as a lack of science content knowledge, combined with age-related limitations in general cognitive capacities (e.g., the elementary school child is a concrete thinker not capable of abstract reasoning). Now we understand that the main barrier to learning the curricular materials we so painstakingly developed is not what the student lacks, but what the student has, namely, alternative conceptual frameworks for understanding the phenomena covered by the theories we are trying to teach. Often these conceptual frameworks work well for children, so we face a problem of trying to change theories and concepts. (Carey 2000)

Page 19: Gdp2 2013 14_3

Uncontroversial:• Students arrive to

instruction with prior ideas/knowledge

• Prior ideas constrain successive learning

• For good and for worst

An open debate on (mis)-conceptions and change

Controversial:• Are all preconceptions

misconceptions? • Are preconceptions concepts?

Are they structured in theories? • In what consists the change? • What changes?• How does change occurs? • What is the positive role of

preconceptions? • How can the research be used

for informing practice?

Page 20: Gdp2 2013 14_3

• misconceptions are blocking or filtering new acquisitions, they are coherent and organized in theory-like structures

• transformation (radical, non-cumulative, change of perspective in which one concept is given out for another, incommensurability between conceptual systems)

• conflict between old and new views, and of the experience of conflict as the necessary and sufficient condition for fueling the transformation.

– 2 main influences :• Thomas Kuhn• Jean Piaget

Radical Version

. Rather, preschool children have constructed a very different theoretical framework from that held by adults, in which they have embedded their understanding of animals, just as children of elementary school age have constructed a different framework theory in which they embed their understanding of the material world. (Carey 2000)

Page 21: Gdp2 2013 14_3

• Radical view of what changes =– theories (e.g. Susan Carey,

Alison Gopnik) that contain concepts

– ontologies have to change too (e.g. Magdalene Chi) because resistant mistakes derive from miscategorizations not just wrong concepts

• Less radical view = frameworks (e.g. Stella Vosniadou)

• Theories are structured• Frameworks are less

structured, internal quasi-coherent explanatory systems, presuppositions

Radical Version

The theory theory is the claim that children or beginning students have theories in very much the same sense that scientists have them. …With respect to another domain, theories of mind, Allison Gopnik (Gopnik & Wellman, 1994) strongly advocates the theory theory.Gopnik is fairly extreme in the parallelism she claims (while still admitting some differences between scientists and children, such as meta-cognitive awareness); others are more conservative in allowing such differences as limits in systematicity and breadth of application (Vosniadou, 2002). (DiSessa 2006, p. 7-8)

Page 22: Gdp2 2013 14_3

Radical Version • Change is produced when a

conflict arises• = there are good reasons ro change

one’s own mind• = learning is a rational activity

Our central commitment in this study is that learning is a rational activity. That is, learning is fundamentally coming to comprehend and accept ideas because they are seen as intelligible and rational. (Posener et al, 1982, p. 212)

Page 23: Gdp2 2013 14_3

• Soft view of what changes– Knowledge in pieces or facets or p-prims

(John Minstrell, Andrea DiSessa)– P-prims are many, loosely structured,

sometimes highly contextual– Children are not scientists

• Soft view of the nature of change– Reasons for difficulty might be the same in

the absence of previous intuitions: collecting and ordinating pieces is always difficult

• Soft view of how to produce change– Some facets are consistent with science and

can anchor instruction (John Minstrell) – Use both conflict and analogy to produce

good explanations (John Clement)– Not necessarily a rational process of

transformation, but accumulation and coordination (Andrea Di Sessa)

Soft Version

A distinctive characteristic of the knowledge in pieces perspective is that the reasons for difficulty of change may be the same in cases where a conceptual structure evolves from scratch, compared to cases where one conceptual system emerges from a different one (theory change). (diSessa 2006, p. 14)

Page 24: Gdp2 2013 14_3

– Are children really intuitively wrong? • Or is it an artifact of how

their beliefs are evaluated ? (e.g. Michael Siegal)

• Isn’t it possible that at least certain misconceptions are induced by instruction? (e.g. pathetic fallacy)

– Do children (and adults) really change their mind?• There’s evidence that

instruction masks previous beliefs rather thn transforming them (e.g. Andrew Shtulman, Kevin Dunbar)

Soft Version

When students learn scientific theories that conflict with their earlier, naïve theories, what happens to the earlier theories? Are they overwritten or merely suppressed? We investigated this question by devising and implementing a novel speeded-reasoning task. Adults with many years of science education verified two types of statements as quickly as possible: statements whose truth value was the same across both naïve and scientific theories of a particular phenomenon (e.g., ‘‘The moon revolves around the Earth’’) and statements involving the same conceptual relations but whose truth value differed across those theories (e.g., ‘‘The Earth revolves around the sun’’)

Page 25: Gdp2 2013 14_3

Participants verified the latter significantly more slowly and less accurately than the former across 10 domains of knowledge (astronomy, evolution, fractions, genetics, germs, matter, mechanics, physiology, thermodynamics, and waves), suggesting that naïve theories survive the acquisition of a mutually incompatible scientific theory, coexisting with that theory for many years to follow. (Shtulman & Valcarcel 2012)

Soft Version

Page 26: Gdp2 2013 14_3

Obstacles to learning

COGNITIVE RESISTANCE TO SCIENTIFIC FACTS AND THEORIESBABIES AS SCIENTISTS?

THE DIFFICULT ACQUISITION OF SCIENTIFIC CONCEPTS: CONCEPTUAL CHANGE

THE PARADOX OF SCIENCE

Page 27: Gdp2 2013 14_3

Among the huge range of activities scientists undertake, two deserve particular attention when considering the unnaturalness of science: (1) scientists develop explanatory theories that challenge received views about empirical matters and (2) their critical assessment of those theories highly values evidence born of empirical tests. What distinguishes science is, first, the relative sophistication and systematicity it brings both to the generation of empirical evidence and to the assessment of that evidence's import for explanatory theories and, second, the pivotal roles that social and cultural arrangements--as opposed to our ordinary cognitive predilections--play in those processes.The requisite skills neither automatically come to human beings nor automatically become habits of the human mind. This is one of the reasons why science must be taught and why so many have such difficulty both learning it and learning how to do it. (Robert McCauley 2000)

Science unnatural

Page 28: Gdp2 2013 14_3

Natural selection, however, did not shape us to earn good grades in science class or to publish in refereed journals. It shaped us to master the local environment, and that led to discrepancies between how we naturally think and what is demanded in the academy. …Good science is pedantic, expensive, and subversive. It was an unlikely selection pressure within illiterate foraging bands like our ancestors', and we should expect people's native “scientific” abilities to differ from the original article. (Pinker 1997 p. 303)

So-so scientists

Page 29: Gdp2 2013 14_3

Isn't it possible that our evolved brains because we evolved in what I call "middle world", where we never have to cope either with the very small or the cosmologically very large, we may never actually have an intuitive feel for what is going on in quantum mechanics, we can still test the predictions, do the mathematics and do the physics to actually test the predictions because anybody can read the diagrams(R. Dawkins)

Counter-intuitive science

Page 30: Gdp2 2013 14_3

• We do science: it is a fact• Our cognitive apparatus must be somehow prepared for science

– Research on cognitive precursors of science in the evolutionary (phylogeny) and developmental (ontogeny) past

• But is not pre-wired for professional science– Research on tools that make science viable

The paradox of science

Page 31: Gdp2 2013 14_3

• A mixed origin of science– Nature: core knowledge, curiosity, causal

reasoning, sensitivity to regularities, … • = capacities that reveal themselves very

easily in the ontogenetic development and probably go far in our evolutionary past

– Culture: social cooperation and tools for augmenting cognitive capacities (e.g. writing for transmission, spatial external representations)• = capacities that have a natural basis and

make our culture special

The natural-cultural hypothesis

Page 32: Gdp2 2013 14_3

But what we can see is that what scientists have constructed over the centuries is the tools, mind tools, thinking tools, mathematical tools which enable us to some degree to overcome the limitations of our evolved brains, our stone-age, if you like, brains; and overcoming those limitations is not always direct sometimes you have to give up something you get, you just may never be able as you to think intuitively about this, but you can know, even if you can't think it intuitively, there is this laborious process you can make progress and you can have the seed of a certain authority to the progress that you can test that and it can carry you from A to B in the same way you know if you are quadriplegic an artificial device can carry you from A to B, you can't walk from A to B but you get from A to B.(D. Dennett)

The role of cognitive artefacts

Page 33: Gdp2 2013 14_3

Precursors of scientific thinking in phylogenesis

Natural (cognitive) enemies of scientific thinking and knowledge in phylogeny

Natural (cognitive) enemies of scientific thinking and knowledge in ontogeny

Precursors of scientific thinking in ontogeny

Cognitive skills and dispositions displayed by scientists

Cognitive skills and dispositions required for science

Mithen McCauley Gopnik Simon Quine

Liebenberg Boyer Chi Spelke Holyoak DiSessa

Carruthers Atran Carey Carey Dunbar

Povinelli Tooby & Cosmides

Bloom Bloom

Pinker

Naturalization of scientific cognition