Top Banner
Chemical Kinetics • Study of speed with which a chemical reaction occurs and the factors affecting that speed • Provides information about the feasibility of a chemical reaction • Provides information about the time it takes for a chemical reaction to occur • Provides information about the series of elementary steps which lead to the formation of product
91
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: GC Chemical Kinetics

Chemical Kinetics

• Study of speed with which a chemical reaction occurs and the factors affecting that speed

• Provides information about the feasibility of a chemical reaction

• Provides information about the time it takes for a chemical reaction to occur

• Provides information about the series of elementary steps which lead to the formation of product

Page 2: GC Chemical Kinetics

time (seconds) Concentration A mol/L

Concentration B, mol/L

Concentration C, mol/L

0 0.76 0.38 01 0.31 0.16 0.202 0.13 6.5 x 10-2 0.403 5.2 x 10-2 2.6 x 10-2 0.584 2.1 x 10-2 1.1 x 10-2 0.735 8.8 x 10-3 4.4 x 10-3 0.866 3.6 x 10-3 1.8 x 10-3 0.957 1.4 x 10-3 7.0 x 10-4 1.028 6.1 x 10-4 3.1 x 10-4 1.079 2.5 x 10-4 1.3 x 10-4 1.07

10 1.0 x 10-4 5.0 x 10-5 1.07

Rate Data for A + B → C

Page 3: GC Chemical Kinetics

A + B → C

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

1.2

time (seconds)

Conc

entr

ation

(mol

/L)

A

B

C

Page 4: GC Chemical Kinetics

The Rate of a Chemical Reaction

• The speed of a reaction can be examined by the decrease in reactants or the increase in products.

• a A + b B → c C + d D

m nRate = k A B

Where m and n are determined experimentally, and not necessarilyEqual to the stiochiometry of the reaction

Page 5: GC Chemical Kinetics

Reaction A → 2 B

A A A

A A

A A A

A

A

B B

B B B

B B

B B

B B

B

B B

B B

B B

BB

1 mol/L 2 mol/L

A = 6.022 x 1022 molecules B 6.022 x 1022 molecules=

in a 1.00 L container in a 1.00 Liter container

Δ A Δ B1- =

t 2 t

Page 6: GC Chemical Kinetics

Average Rate

• Rate of A disappearing is• Let’s suppose that after 20 seconds ½ half of A

disappears.• Then

• And Rate of B appearing is • Then

Δ A-

t

Δ B1

2 t

-2 -2f i

f i

Δ B B -B1 1 1.00 mol/L - 0.00 mol/L mol = = x = 2.5 x 10 M/s or 2.5 x 10

2 t t - t 2 20 s - 0 s L-s

-2 -2f i

f i

Δ A A A 0.50 mol/L - 1.00 mol/L mol- = - = - = - 2.5 x 10 M/s or - 2.5 x 10

t t t 20 s - 0 s L-s

Page 7: GC Chemical Kinetics

Average Rate Law for the General Equationa A + b B → c C + d D

Δ A Δ B Δ C Δ D1 1 1 1- x = - x = x = x

a Δt b Δt c Δt d Δt

For Example:N2O5 (g) → 2 NO2 (g) + ½ O2 (g)

2 5 (g) 2 (g) 2 (g)Δ N O Δ NO Δ O1- = x = 2 x

Δt 2 Δt Δt

Page 8: GC Chemical Kinetics

Determination of the Rate Equation

• Determined Experimentally• Can be obtained by examining the initial rate

after about 1% or 2% of the limiting reagent has been consumed.

Page 9: GC Chemical Kinetics

Consider the Reaction:CH3CH2CH2CH2Cl (aq) + H2O (l) → CH3CH2CH2CH2OH (aq) + HCl (aq)

time (seconds) Concentration n-butyl chloride

mol/L

0 0.1050 9.05 x 10-2

100 8.2 x 10-2

150 7.41 x 10-2

200 6.71 x 10-2

300 5.49 x 10-2

400 4.48 x 10-2

500 3.68 x 10-2

800 2.00 x 10-2

Page 10: GC Chemical Kinetics

Average Rates, mol

L-s

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

0.0 0.1000 1.90 x 10-4

50.0 0.0905

mol

L-s

4 9[C H Cl]

t

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

50.0 0.0905 1.70 x 10-4

100.0 0.0820

mol

L-s

4 9[C H Cl]

t

Page 11: GC Chemical Kinetics

Average Rates, mol

L-s

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

100.0 0.0820 1.58 x 10-4

150.0 0.0741

mol

L-s

4 9[C H Cl]

t

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

150.0 0.0741 1.74 x 10-4

200.0 0.0671

mol

L-s

4 9[C H Cl]

t

Page 12: GC Chemical Kinetics

Average Rates, mol

L-s

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

200.0 0.0671 1.22 x 10-4

300.0 0.0549

mol

L-s

4 9[C H Cl]

t

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

300.0 0.0549 1.01 x 10-4

400.0 0.0448

mol

L-s

4 9[C H Cl]

t

Page 13: GC Chemical Kinetics

Average Rates, mol

L-s

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

400.0 0.0448 8.00 x 10-5

500.0 0.0368

mol

L-s

4 9[C H Cl]

t

time, seconds [CH3CH2CH2CH2Cl] Average Rate,

500.0 0.0368 5.60 x 10-5

800.0 0.0200

mol

L-s

4 9[C H Cl]

t

Page 14: GC Chemical Kinetics

0 100 200 300 400 500 600 700 800 9000

0.02

0.04

0.06

0.08

0.1

0.12

time (seconds)

Conc

entr

ation

(mol

/L)

Instantaneous Rate or initial rate at t=0 s

Instantaneous Rate at t = 500 s

Page 15: GC Chemical Kinetics

at 0 s

-4at 0 s

0.10 M - 0.060 MInstaneous Rate =

190 s - 0 s0.040 M

Instaneous Rate = = 2.1 x 10 M s190 s

at 500 s

-5at 500 s

0.042 M - 0.020 MInstaneous Rate =

800 s - 400 s0.022 M

Instaneous Rate = = 5.5 x 10 M s400 s

Page 16: GC Chemical Kinetics

Order of Reaction

• Zero order –independent of the concentration of the reactants, e.g, depends on light

• First order - depends on a step in the mechanism that is unimolecular

• Pseudo first order reaction – one of the reactants in the rate determining step is the solvent

• Second order – depends on a step in the mechanism that is bimolecular

• Rarely third order – depends on the step in the mechanism that is termolecular

Page 17: GC Chemical Kinetics

time (seconds) Concentration n-butyl chloride

mol/L

0 0.10

50 9.05 x 10-2

100 8.2 x 10-2

150 7.41 x 10-2

200 6.71 x 10-2

300 5.49 x 10-2

400 4.48 x 10-2

500 3.68 x 10-2

800 2.00 x 10-2

Data from the hydrolysis of n-butyl chloride

Page 18: GC Chemical Kinetics

time (seconds) [C4H9Cl]

0 0.10

50 9.05 x 10-2

100 8.2 x 10-2

150 7.41 x 10-2

200 6.71 x 10-2

300 5.49 x 10-2

400 4.48 x 10-2

500 3.68 x 10-2

800 2.00 x 10-2

IF Zero Order

Page 19: GC Chemical Kinetics

0 100 200 300 400 500 600 700 800 9000

10

20

30

40

50

60

time (seconds)

[n-b

utyl

chlo

ride]

Therefore, the reaction is not zero order

Page 20: GC Chemical Kinetics

If Second Order

time (seconds) 1/[C4H9Cl]

0 10

50 11.0

100 12.2

150 13.5

200 14.9

300 18.2

400 22.3

500 27.2

800 50

Page 21: GC Chemical Kinetics

0 100 200 300 400 500 600 700 800 9000

10

20

30

40

50

60

time (seconds)

1/[n

-but

yl ch

lorid

e]

Therefore, the reaction is not second order

Page 22: GC Chemical Kinetics

time (seconds)

log [C4H9Cl] ln[C4H9Cl]

0 -1 -2.350 -1.04 -2.4

100 -1.09 -2.51150 -1.13 -2.60200 -1.17 -2.69300 -1.26 -2.90400 -1.35 -3.11500 -1.43 -3.29800 -1.7 -3.92

IF First Order Reaction

Page 23: GC Chemical Kinetics

First Order Plot

0 100 200 300 400 500 600 700 800 900

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

f(x) = − 0.000873532550693703 x − 0.99846318036286

time (seconds)

log

[n-b

utyl

chlo

ride]

Page 24: GC Chemical Kinetics

First Order Plot

0 100 200 300 400 500 600 700 800 900

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

f(x) = − 0.00201664887940235 x − 2.29870864461046

time (seconds)

ln[C

4H9C

l]

Page 25: GC Chemical Kinetics

Slope

kslope = -

2.303

-2.303 x slope = k

-4

-3

-2.303 x - 9.0 x 10 = k

2.1 x 10 = k

Page 26: GC Chemical Kinetics

Slope

slope = - k

3 1

3 1

- (- 2 x 10 s ) = k

2 x 10 s = k

Page 27: GC Chemical Kinetics

Rate of the Reaction

Rate = k [n-butylchloride]

Page 28: GC Chemical Kinetics

For the ReactionN2O5 (g) → 2 NO2 (g) + ½ O2 (g)

2 5Rate = k [N O ]

The rate can be used to explain the mechanism

Page 29: GC Chemical Kinetics

(1) Slow Step

(2) Fast Step

NO

N

OO

O O....

: :.. ..

: : : :.. ..- -

slow

--.... ::::

....::

..

.. OO

O O

NO

N .+ +

++

+

N2O5NO2

NO3

-..

::

..:O

O

N .++

NO2NO3

+ON

O

O....

:..

: :..-

fast 1/2 O2

Page 30: GC Chemical Kinetics

Sum of the two steps:

NO

N

OO

O O....

: :.. ..

: : : :.. ..- - -

..::

..:O

O

N .+ + ++

N2O5NO2

1/2 O2

+.N

O

O:

: :..-

NO2

+

N2O5 → 2 NO2 + ½ O2

or2 N2O5 → 4 NO2 + O2

Page 31: GC Chemical Kinetics

ApplicationMechanism of a Chemical Reaction

Suggest a possible mechanism forNO2 (g) + CO (g) → NO (g) + CO2 (g)

Given that 2

2(g)Rate = k [NO ]

(a)

(b)

Suggest a possible mechanism for2 NO2 (g) + F2 (g) → 2 NO2F (g)

Given that

2 (g) 2 (g)Rate = k [NO ] [F ]

Page 32: GC Chemical Kinetics

Factors Affecting the Rate of a Chemical Reaction

• The Physical State of Matter• The Concentration of the Reactants• Temperature• Catalyst

Page 33: GC Chemical Kinetics

For A Reaction to Occur

• Molecules Must Collide• Molecules must have the Appropriate

Orientation• Molecules must have sufficient energy to

overcome the energy barrier to the reaction-• Bonds must break and bonds must form

Page 34: GC Chemical Kinetics

A Second Order Reaction

-2 2 (aq) (aq) 2 (l) 2 (g)H O + I H O + O

-2 2(aq) (aq)Rate = k [H O ] [I ]

Page 35: GC Chemical Kinetics

Rate Constant “k”

• Must be determined experimentally• Its value allows one to find the reaction rate

for a new set of concentrations

Page 36: GC Chemical Kinetics

The following data were collected for the rate of the reaction Between A and B, A + B → C , at 25oC. Determine the rate law for the reaction and calculate k.

Experiment [A], moles/L [B], moles/L Initial Rate, M/s

1 0.1000 0.1000 5.500 x 10-6

2 0.2000 0.1000 2.200 x 10-5

3 0.4000 0.1000 8.800 x 10-5

4 0.1000 0.3000 1.650 x 10-5

5 0.1000 0.6000 3.300 x 10-5

Page 37: GC Chemical Kinetics

Solution A:

From Experiments 1 and 2

m nRate = k A B

m n-6(1) 5.5 x 10 M/s = k 0.1000 M 0.1000 M

m n-5(2) 2.2 x 10 M/s = k 0.2000 M 0.1000 M

Divide equation (1) into equation (2)

m n-5

m n-6

m

k 0.2000 M 0.1000 M2.2 x 10 M/s =

5.5 x 10 M/s k 0.1000 M 0.1000 M

4 2

2 = m

Page 38: GC Chemical Kinetics

Solution B:

Subtract equation (2) from equation (1)

-6 -5log (5.5 x 10 ) -log (2.2 x 10 ) = m [log 0.1000 -log 0.2000 ]

-5.3 - (-4.7) = m [-1 - (-0.7)]

-0.6 = m [-0.3]

-0.6 = m

-0.32 = m

-6(1) log (5.5 x 10 ) = log k + m log 0.1000 + n log 0.1000

-5(2) log (2.2 x 10 ) = log k + m log 0.2000 + n log 0.1000

Page 39: GC Chemical Kinetics

Solution A:

From Experiments 4 and 5

Divide equation (1) into equation (2)

m n-5(1) 1.65 x 10 M/s = k 0.1000 M 0.3000 M

m n-5(2) 3.3 x 10 M/s = k 0.1000 M 0.6000 M

m n-5

m n-6

n

k 0.1000 M 0.6000 M3.3 x 10 M/s =

1.65 x 10 M/s k 0.1000 M 0.3000 M

2 2

1 = n

Page 40: GC Chemical Kinetics

Solution B:

Subtract equation (2) from equation (1)

-5(1) log (1.65 x 10 ) = log k + m log 0.1000 + n log 0.3000

-5(2) log (3.3 x 10 ) = log k + m log 0.1000 + n log 0.6000

-5 -5log (1.65 x 10 ) -log (3.3 x 10 ) = m [log 0.3000 -log 0.6000 ]

-4.78 - (-4.5) = m [-0.5227 - (-0.2218)]

-0.3 = m [-0.3]

-0.3 = m

-0.31 = m

Page 41: GC Chemical Kinetics

Rate Constant k

m nRate = k A B

2 1Rate = k A B

2

Rate = k

A B

Page 42: GC Chemical Kinetics

Rate Constant kFrom Experiment 3

2

Rate = k

A B

-5

2

M8.800 x 10

s = k 0.4000 M 0.1000 M

-32

2-3

2

15.500 x 10 = k

M s

L5.500 x 10 = k

mol s

Page 43: GC Chemical Kinetics

Rate Constant kFrom Experiment 1

2

Rate = k

A B

-32

2-3

2

15.500 x 10 = k

M s

L5.500 x 10 = k

mol s

-5

2

M5.500 x 10

s = k 0.1000 M 0.1000 M

Page 44: GC Chemical Kinetics

Your Understanding of this ProcessConsider the Data for the Following Reaction:

Experiment [CH3CO2CH3]M

[-OH]M

Initial Rate, M/s

1 0.050 0.050 0.000342 0.050 0.100 0.000693 0.100 0.100 0.00137

Determine the Rate Law Expression and the value of k consistentWith these data.

CH3 C

O

OCH3

+ OH_

CH3 C

O_

O

+ CH3OH

Page 45: GC Chemical Kinetics

Solution :

From Experiments 1 and 2

Divide equation (1) into equation (2)

nm -3 2 3Rate = k [CH CO CH ] OH

m n-4(1) 3.4 x 10 M/s = k 0.050 M 0.050 M

m n-4(2) 6.9 x 10 M/s = k 0.50 M 0.100 M

m n-4

m n-5

n

k 0.050 M 0.100 M6.9 x 10 M/s =

3.4 x 10 M/s k 0.050 M 0.050 M

2 2

1 = n

Page 46: GC Chemical Kinetics

Solution :

From Experiments 2 and 3

Divide equation (1) into equation (2)

m n-4(1) 6.9 x 10 M/s = k 0.050 M 0.050 M

m n-3(2) 1.37 x 10 M/s = k 0.100 M 0.100 M

m n-3

m n-5

m

k 0.100 M 0.100 M1.37 x 10 M/s =

6.9 x 10 M/s k 0.050 M 0.100 M

2 2

1 = m

Page 47: GC Chemical Kinetics

Rate Expression

-3 2 3Rate = k [CH CO CH ] [ OH]

-3 2 3

Rate = k

[CH CO CH ] [ OH]

M0.00137

s = k[0.100 M] [0.100 M]

10.137 = k

M sL

0.137 = kmol s

Page 48: GC Chemical Kinetics

AssignmentDetermine the Rate Law for the following reaction from the given data:

Experiment [NO (g)]M

[O2 (g)]M

Initial Rate, M/s

1 0.020 0.010 0.0282 0.020 0.020 0.0573 0.020 0.040 0.1144 0.040 0.020 0.2275 0.010 0.020 0.014

2 NO (g) + O2 (g) → 2 NO2 (g)

Page 49: GC Chemical Kinetics

Relationship Between Concentration and Time

First Order Reactiono

A product

a xx

o

o

o o

o o

o

o

o

o

-ln (a -x) = kt + C

at x = o and t = o, C = -ln a

-ln (a -x) = kt - ln a

ln a - ln (a -x) = kt

aln = kt

a -x

or

a ktlog =

a -x 2.303

o

o

o

o

dx = k (a -x)

dtdx

= k dta -x

dx = k dt

a -x

let s = a -x

ds = -dx

ds = k dt

s-ln s = kt + C

Page 50: GC Chemical Kinetics

A plot of o

o

aln versus t

a -x

Gives a Straight line

The Following Reaction is a First Order Reaction:

C

C C

H

H

H H

H

H

C

CC

H

H

H

H

H

H

Plot the linear graph for concentration versus timeand obtain the rate constant for the reaction.

Page 51: GC Chemical Kinetics

Data for the Transformation of cylcpropane to propene

ao M

XM

ao –xM

Ln[ao]/[ ao –x] tseconds

0.050 0 0.050 0 0

0.050 0.0004 0.0496 9.0 x 10-3 600

0.050 0.0009 0.0491 0.0180 1200

0.050 0.0015 0.0485 0.0300 2000

0.050 0.0022 0.0478 0.045 3000

0.050 0.0036 0.0464 0.075 5000

0.050 0.0057 0.0443 0.120 8000

0.050 0.0070 0.0430 0.150 10000

0.050 0.0082 0.0418 0.180 12000

Page 52: GC Chemical Kinetics

slope = 2 x 10-5 s-1

0 2000 4000 6000 8000 10000 12000 140000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

f(x) = 0.000015 x

time (seconds)

ln (a

o /(

ao –

x))

Page 53: GC Chemical Kinetics

Data for the Transformation of cylcpropane to propene

ao M

XM

ao –xM

Ln [ ao –x] tseconds

0.050 0 0.050 -2.996 0

0.050 0.0004 0.0496 -3.0038 600

0.050 0.0009 0.0491 -3.014 1200

0.050 0.0015 0.0485 -3.026 2000

0.050 0.0022 0.0478 -3.0407 3000

0.050 0.0036 0.0464 -3.070 5000

0.050 0.0057 0.0443 -3.1167 8000

0.050 0.0070 0.0430 -3.1466 10000

0.050 0.0082 0.0418 -3.1748 12000

Page 54: GC Chemical Kinetics

0 2000 4000 6000 8000 10000 12000 14000

-3.2

-3.15

-3.1

-3.05

-3

-2.95

-2.9

f(x) = − 1.50112367675131E-05 x − 2.99568114479088

time (seconds)

Ln (a

o –

x)

-slope = -2 x 10-5s-1

Slope = 2 x 10-5 s-1

Page 55: GC Chemical Kinetics

Relationship Between Concentration and Time

Second Order Reactiono

A product

a xx

2o

2o

2o

o

2

dx = k (a -x)

dtdx

= k dt(a -x)

dx = k dt

(a -x)

let s = a -x

ds = -dx

ds = k dt

s1

= kt + Cs

o

o

o o

o o

1 = kt + C

a -x

1at x = o and t = o, C =

a

1 1 = kt +

a -x a

1 1 - = kt

a -x a

Page 56: GC Chemical Kinetics

A plot of

Gives a Straight line

The Following Reaction is a Second Order Reaction:

2 HI (g) → H2 (g) + I2 (g)

Plot the linear graph for concentration versus timeand obtain the rate constant for the reaction.

o

1 versus t

a -x

Page 57: GC Chemical Kinetics

ao

MXM

ao –xM

1/[ ao –x]M-1

tMinutes

0.0100 0 0.0100 100 0.00

0.0100 0.0060 0.00400 250 5.00

0.0100 0.0075 0.00250 400 10.0

0.0100 0.0086 0.00143 700 20.0

0.0100 0.0090 0.0010 1000 30.0

0.0100 0.0099 0.00077 1300 40.0

0.0100 0.0094 0.00063 1600 50.0

0.0100 0.0095 0.00053 1900 60.0

Data for the Transformation of hydrogen iodide gas to hydrogen and iodine

Page 58: GC Chemical Kinetics

0 10 20 30 40 50 60 700

200

400

600

800

1000

1200

1400

1600

1800

2000

f(x) = 30 x + 100

time (minutes)

1/(a

o –

x)

slope = 30. L mol-1 min-1

Page 59: GC Chemical Kinetics

Graphical Method for Determining the Order of a Reaction

• First Order Reaction: y = ln (ao – x); x = t; slope = -k; and the intercept is ln ao

or y = ln (ao /(ao – x)); x = t; slope = k; and the intercept =0

• Second Order Reaction: y = 1/ (ao – x); x = t; slope = k; and the intercept = 1/ ao

• Zero Order Reaction: y = x; x = t; slope = k and the intercept = 0or y = ao – x ; x = t; slope = -k and the intercept = ao

Page 60: GC Chemical Kinetics

Zero Order Reaction

dx = k

dtdx = k dt

dx = k dt

x = kt + C

at t = 0 and x =0; C = 0

x = kt

o

o

a -x t

a 0

o o

o o

o o

dx = dt

a - (a -x) = kt

- (a -x) = kt - a

(a -x) = - kt + a

Page 61: GC Chemical Kinetics

Application of the Graphical Method for Determining the Order of a Reaction

N2O5 (g) → 2 NO2 (g) + ½ O2 (g)

[ N2O5 ]M

tminutes

2.08 3.071.67 8.771.36 14.450.72 31.28

Tabulate the data so that each order may be tested

Page 62: GC Chemical Kinetics

[ N2O5 ]M

(zero order)

tminutes

ln[ N2O5 ](first order)

1/[ N2O5 ]M-1

(second order)2.08 3.07 0.732 0.481

1.67 8.77 0.513 0.599

1.36 14.45 0.307 0.735

0.72 31.28 -0.329 1.390

Data tabulation to determine which order will give a linear graph

Page 63: GC Chemical Kinetics

Test for zero order reaction

Not linear; therefore, the reaction is not zero order

0 5 10 15 20 25 30 350

0.5

1

1.5

2

2.5

time (minutes)

[N2O

5]

Page 64: GC Chemical Kinetics

Test for first order reaction

Linear; therefore, the reaction is first order

0 5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f(x) = − 0.0375520327162226 x + 0.846217630868234

time (minutes)

ln[N

2O5]

Page 65: GC Chemical Kinetics

Test for second order reaction

Non-linear; therefore, the reaction is not second order

0 5 10 15 20 25 30 350

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time (minutes)

1/[N

2O5]

Page 66: GC Chemical Kinetics

Half Life for a First Order Reaction

o1

2

o

12

12

12

aln = kt

1 x a

2ln 2= k t

0.693 = k t

0.693 = t

k

Page 67: GC Chemical Kinetics

Half Life for a Second Order Reaction

12

oo

12

o o

12

o

12

o

1 1 - = kt

1 aa2

2 1 - = kt a a

1 = kt

a

1 = t

k a

Page 68: GC Chemical Kinetics

Half Life for a Zero Order Reaction

o 1 o2

o o 12

o 12

o1

2

1 a = - kt + a

21

a - a = - kt 2

1 a = - kt

2a

= t 2 k

Page 69: GC Chemical Kinetics

Application of Half Life

• The rate constant for transforming cyclopropane into propene is 0.054 h-1

• Calculate the half-life of cyclopropane.• Calculate the fraction of cyclopropane

remaining after 18.0 hours.• Calculate the fraction of cyclopropane

remaining after 51.5 hours.

Page 70: GC Chemical Kinetics

12

12

0.693 = t

0.054/h12.8 h = t

Half-Life

o

o

o

o

- kto

o

- (0.054/h) x 51.5 ho

o

- 2.8o

o

o

o

aln = kt

a -x

a -xln = - kt

a

a -x= e

a

a -x= e

a

a -x= e

a

a -x= 0.061

a

Fraction of cyclopropaneRemaining after 18.0 hours

Fraction of cyclopropaneRemaining after 51.5 hours

o

o

o

o

- kto

o

- (0.054/h) x 18.0 ho

o

- 0.972o

o

o

o

aln = kt

a -x

a -xln = - kt

a

a -x= e

a

a -x= e

a

a -x= e

a

a -x= 0.38

a

Page 71: GC Chemical Kinetics

Effect of Temperature on the Reaction Rate

Arrhenius Equation

actE- RTk = A e

actEln k = - + ln A

RT

of the form y = mx + b

Page 72: GC Chemical Kinetics

Use the Following Data to Determine the Eact

for

2 (g) 2 (g) 2 (g)2 N O 2 N + O

TK

kM-1/s

Ln k 104(1/T)

1125 11.5900 2.450 8.890

1053 1.6700 0.510 9.50

1001 0.3800 -0.968 9.99

838 0.0010 -6.810 11.9

Page 73: GC Chemical Kinetics

8.5 9 9.5 10 10.5 11 11.5 12 12.5

-8

-6

-4

-2

0

2

4

f(x) = − 3.07115033064349 x + 29.7212674570598

104(1/T)

ln k

act255 kJ/mol = E

4 act

4act

4act

5act

Eslope = -3.07 x 10 K = -

R

-3.07 x 10 K x - R = E

J-3.07 x 10 K x - 8.314 = E

K mol

2.55 x 10 J/mol = E

Page 74: GC Chemical Kinetics

Effect of a Catalyst on the Rate of a Reaction

• Lowers the energy barrier to the reaction via lowering the energy of activation

• Homogeneous catalyst- in the same phase as the reacting molecules

• Herterogeneous catalyst – in a different phase from the reacting molecules

Page 75: GC Chemical Kinetics

Example of a Homogeneous Catalyst

-2 2 (aq) (aq) 2 (aq) 2 (l) 2 (g)

-2 2 (aq) 2 (aq) (aq) 2 (l) 2 (g)

1 11. H O + Br Br + H O + O

2 21 1

2. H O + Br Br + H O + O2 2

Page 76: GC Chemical Kinetics

reaction coordinates

PE

intermediate

reactants

products

Page 77: GC Chemical Kinetics

Example of Heterogeneous Catalyst

H H C C

H H

HH

Finely divided metal

Page 78: GC Chemical Kinetics

An interesting problem:

The reaction between propionaldehyde and hydrocyanic acid have been observed by Svirbely and Roth and reported in the Journal of the American Chemical Society. Use this data to ascertain the order of the reaction and the value of the rate constant for this reaction.

C

H

O

+ C

OHC N

H

::

..

H C N :

:..

+C

H

HON C:

..:

CH3CH2 CH3CH2 CH2CH3

Page 79: GC Chemical Kinetics

time, minutes [HCN] [CH3CH2CHO]

2.78 0.0990 0.0566

5.33 0.0906 0.0482

8.17 0.0830 0.0406

15.23 0.0706 0.0282

19.80 0.0653 0.0229

∞ 0.0424 0.0000

Page 80: GC Chemical Kinetics

Check to determine first order in HCN

0 2 4 6 8 10 12 14 16 18

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

time (minutes)

ln([H

CN]-x

)

Page 81: GC Chemical Kinetics

Check to determine first order in propionaldehyde

0 2 4 6 8 10 12 14 16 18

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

time (minutes)

ln ([

prop

iona

ldeh

yde]

-x)

Page 82: GC Chemical Kinetics

So close; therefore, let’s take another approach. Let [HCN] = ao and [propionaldehyde] = bo

Then,

o o

o o

o o

o o

o o o o o o

dx = k (a -x) (b -x)

dtdx

= k dt(a -x) (b -x)

dx = k dt

(a -x) (b -x)

Solution:

(a -x) b1 1 ln = kt - ln

(a -b ) b -x (a -b ) a

Page 83: GC Chemical Kinetics

o

o

-1 -1o

o

-1 -1o

o

-1 -1o

o

(a -x)1 1 0.0566 ln = kt - ln

0.0424 M b -x 0.0424 M 0.0990

(a -x)23.6 M ln = kt - 23.6 M ln 0.572

b -x

(a -x)23.6 M ln = kt - 23.6 M (-0.559)

b -x

(a -x)23.6 M ln = kt + 13.2 M

b -x

Page 84: GC Chemical Kinetics

o

o

-1 -1o

o

-1 -1o

o

-1 -1o

o

(a -x)1 1 0.0566 ln = kt - ln

0.0424 M b -x 0.0424 M 0.0990

(a -x)23.6 M ln = kt - 23.6 M ln 0.572

b -x

(a -x)23.6 M ln = kt - 23.6 M (-0.559)

b -x

(a -x)23.6 M ln = kt + 13.2 M

b -x

Page 85: GC Chemical Kinetics

time, minutes [HCN] - x [CH3CH2CHO]-x

2.55 0.0906 0.0482 14.9

5.39 0.0830 0.0406 16.9

12.76 0.0706 0.0282 21.7

17.02 0.0653 0.0229 24.8

Let’s construct the data in a different format

3 2

([HCN]-x)(23.6) ln

([CH CH CHO]-x)

Page 86: GC Chemical Kinetics

0 2 4 6 8 10 12 14 16 180

5

10

15

20

25

30

f(x) = 0.67777080987964 x + 13.183621262835

time, minutes

Slope = 0.678; therefore, k = 0.678 M-1min-1

3 2

([HCN] - x)23.6 ln

([CH CH CHO]-x)

Page 87: GC Chemical Kinetics

3 2Rate = k [HCN] [CH CH CHO]

Mechanism:

HCN + H2Ok

k

1

2

-1

H3O+ + CN

-1.

CH3CH2 C

O

H

2. + H3O+

k

k-2

CH3CH2 C

OH

H

+

+ H2O

3.

CH3CH2 C

H

OH+

+ CN- C

H

HO

CH3CH2 CN

k3

Page 88: GC Chemical Kinetics

Steps 1 and 2 are fast equilibrium steps; and step 3 is the rate determining step

Rate = CH3CH2 C

OH

H

+

[ CN- ]k3

k 1 [HCN] [H2O] = k -1 [H3O+] [CN

-]

k 1 [HCN] [H2O]=

k-1 [H3O+]

[CN-]

Page 89: GC Chemical Kinetics

CH3CH2 C

OH

H

+CH3CH2 C

O

H

[H3O+]

k2

-2[H2O]k

=

Rate = k3 k1 [HCN] [H2O]

k -1

[H3O+]

CH3CH2 C

O

H

[H3O+]

k2

-2 [H2O]k

Page 90: GC Chemical Kinetics

Rate = [HCN] CH3CH2 C

O

H

k

Page 91: GC Chemical Kinetics

Revisit the kinetics for

2 NO (g) + O2 (g) → 2 NO2 (g)

22Rate = k [NO] [O ]