Top Banner
Gauge independence of Abelian confinement mec hansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishig uro, Y.Koma) Lattice2007-- --- 31/7/2007
18

Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Gauge independence of Abelian confinement mechansim

in SU2 gluodynamics

T. Suzuki, Kanazawa Univ., Japan(In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Lattice2007-- ---31/7/2007

Page 2: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Surprizing results:

1. Extraction of the confining component in gauge fields is possible without cooling or any gauge fixing. Gauge independence

2. Abelian and monopole dominances are almost perfect.

3. Squeezing of electric fields occurs due to solenoidal monopole currents. The Abelian dual Meissner effect is working. The vacuum is near the border between type 1 and 2 superconductor.

4. Confinement of non-Abelian color charge is explained in the framework of the Abelian dual Meissner effect.

Page 3: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

1. Extraction of confining component

Non-perturbative confining component

Page 4: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)
Page 5: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

2-1. Abelian dominance

Page 6: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Abelian static potential

Error bars are very small.

Page 7: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Force from Abelian static potential

Consistent with theoretical works (’99 Ogilvie, Faber et al. )

Page 8: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

2-2 Monopole dominance

Page 9: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Noise reduction method using random gauge transformations

Page 10: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Abelian, monopole and photon static potentials

Page 11: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Forces

Page 12: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

String tensions

Monopole dominance as well as Abelian dominance are seen very beautifully.

Both are much better than in MA gauge.

Page 13: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

3. Squeezing of electric field fluxConnected correlations between NA Wilson loop and Abelian operators

Page 14: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Dual Meissner effect

Monopoles are responsible for the dual Meissner effect.

Page 15: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Vacuum type

Errors are still too large. We need more statistics on larger lattice.

Page 16: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

4. Color confinement from Abelian picture

Page 17: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)
Page 18: Gauge independence of Abelian confinement mechansim in SU2 gluodynamics T. Suzuki, Kanazawa Univ., Japan (In collab. with T.Sekido, K.Ishiguro, Y.Koma)

Surprizing results:

1. Extraction of the confining component in gauge fields is possible without cooling or any gauge fixing. Gauge independence

2. Abelian and monopole dominances are almost perfect.

3. Squeezing of electric fields occurs due to solenoidal monopole currents. The Abelian dual Meissner effect is working. The vacuum is near the border between type 1 and 2 superconductor.

4. Confinement of non-Abelian color charge is explained in the framework of the Abelian dual Meissner effect.