Top Banner
68

Gas Oil Engines

Jul 17, 2016

Download

Documents

Gasoline and oil engines.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Gas Oil Engines
Page 2: Gas Oil Engines

TheProjectGutenbergEBookofGasandOilEngines,SimplyExplained,by

WalterC.Runciman

ThiseBookisfortheuseofanyoneanywhereatnocostandwith

almostnorestrictionswhatsoever.Youmaycopyit,giveitawayor

re-useitunderthetermsoftheProjectGutenbergLicenseincluded

withthiseBookoronlineatwww.gutenberg.net

Title:GasandOilEngines,SimplyExplained

AnElementaryInstructionBookforAmateursandEngineAttendants

Author:WalterC.Runciman

ReleaseDate:November17,2008[EBook#27286]

Language:English

***STARTOFTHISPROJECTGUTENBERGEBOOKGASANDOILENGINES***

ProducedbyStevenGibbs,GregBergquistandtheOnline

DistributedProofreadingTeamathttp://www.pgdp.net

GAS AND O ILENGINES

SIMPLYEXPLAINEDAnElementaryInstructionBookforAmateurs

andEngineAttendants

BY

WALTERC.RUNCIMAN

FULLYILLUSTRATED

LONDON

Page 3: Gas Oil Engines

ModelEngineerSeries.The"ModelEngineer"Series,no.26.

1905

Page 4: Gas Oil Engines

CONTENTS

CHAP. PAGE

PREFACE 5I. INTRODUCTORY 7

II. THECOMPONENTPARTSOFANENGINE 13

III.HOWAGASENGINEWORKS 22IV. IGNITIONDEVICES 33V.MAGNETOIGNITION 47VI.GOVERNING 51VII. CAMSANDVALVESETTINGS 63VIII.OILENGINES 81

Page 5: Gas Oil Engines

PREFACE

MY object in placing this handbook before the reader is to provide him with a simple andstraightforwardexplanationofhowandwhyagasengine,oranoilengine,works.Themainfeaturesandpeculiaritiesintheconstructionoftheseenginesaredescribed,whilethemethodsandprecautionsnecessarytoarriveatdesirableresultsaredetailedasfullyasthelimitedspacepermits.Ihaveaimedatsupplyingjustthatinformationwhichmyexperienceshowsismostneededbytheuserandbytheamateurbuilderofsmallpowerengines.Inplaceofgivingamerelistofcommonenginetroublesand their remedies, I have thought it better to endeavour to explain thoroughly the fundamentalprinciplesandessentialsofgoodrunning,sothatshouldanydifficultyarise,theengineattendantwillbeabletoreasonoutforhimselfthecauseofthetrouble,andwillthusknowtheproperremedytoapply. This will give him a command over his engine which should render him equal to anyemergency.

WALTERC.RUNCIMAN.

LONDON,E.C.

GASANDOILENGINESSIMPLYEXPLAINED

Page 6: Gas Oil Engines
Page 7: Gas Oil Engines

CHAPTERI

INTRODUCTORY

THEhistoryofthegasenginegoesbackalongway,andthehistoryoftheinternalcombustionengineproperfurtherstill.Itwillbeinterestingtorecountthemainpointsinthehistoryofthedevelopmentoftheclassofengineweshalldealwithinthefollowingpages,inordertoshowwhathugestridesweremadesoonafterthecorrectandmostworkabletheoryhadbeenformulated.

In1678AbbéHautefeuilleexplainedhowamachinecouldbeconstructedtoworkwithgunpowderasfuel.Hisarrangementwastoexplodethegunpowderinaclosedvesselprovidedwithvalves,andcool theproductsofcombustion,andsocauseapartialvacuumtobeformed.Bytheaidofsuchamachine, water could be raised. This inventor, however, does not seem to have carried out anyexperiments.

In 1685 Huyghens designed another powder machine; and Papin, in 1688, described a similarmachine,whichwasprovidedwith regularvalves,asdevisedbyhimself, in theProceedingsof theLeipsic Academy, 1688. From this time until 1791, when John Barber took out a patent for theproductionofforcebythecombustionofhydrocarboninair,practicallynoadvancementwasmade.The latter patent, curiously enough, comprised a very primitive form of rotary engine. Barberproposedtoturncoal,oil,orothercombustiblestuffintogasbymeansofexternalfiring,andthentomixthegasessoproducedwithairinavesselcalledtheexploder.Thismixturewasthenignitedasitissuedfromthevessel,andtheensuingflashcausedapaddle-wheeltorotate.Mentionisalsomadethat itwasanobject to injecta littlewater into theexploder, inorder tostrengthentheforceof theflash.

RobertStreet'spatentof1794mentionsapistonengine,inthecylinderofwhich,coaltar,spirit,orturpentinewasvaporised,thegasesbeingignitedbyalightburningoutsidethecylinder.Thepistoninthisenginewasthrownupwards,thisinturnforcingapumppistondownwhichdidworkinraisingwater.Thiswasthefirstrealgasengine,thoughitwascrudeandveryimperfectlyarranged.

In1801FranzoseLebondescribedamachinetobedrivenbymeansofcoal-gas.Twopumpswereused to compress air and gas, and themixturewas fired, as recommended by the inventor, by anelectricspark,anddroveapistoninadouble-workingcylinder.

TheatmosphericengineofSamuelBrown,1823,hadapistonworking inacylinder intowhichgaswas introduced,and the latter,being ignited,expanded theair incylinderwhilstburning likeaflame.The fly-wheel carried thepistonup to the topof its stroke, thenwaterwasused tocool theburntgases,whichalsoescapedthroughvalves,thelatterclosingwhenthepistonhadreachedthetopofitsstroke.Apartialvacuumwasformed,andtheatmosphericpressuredidworkonthepistononits down stroke. A number of cylinders were required in this engine, three being shown in thespecificationallconnectedtothesamecrank-shaft.AccordingtotheMechanic'sMagazine, suchan

Page 8: Gas Oil Engines

enginewithacompletegasgeneratingplantwasfittedtoaboatwhichranasanexperimentupontheThames.

A two-cylinder engine working on to a beam was built in Paris, but no useful results wereobtained.

Wright'sengineof1833usedamixtureofcombustiblegasandair,whichoperatedlikesteaminasteam engine. This engine had a water-jacket, centrifugal governor, and flame ignition. In 1838Barnettappliedtheprincipleofcompressiontoasingle-actingengine.Healsoemployedagasandairpump,whichwereplacedrespectivelyoneithersideoftheenginecylinder,communicationbeingestablished between the receiver into which the pumps delivered and the working cylinder as thechargewasfired.Thedouble-actingengineswhichBarnettdevisedlaterwerenotsosuccessful.

Fromthistimetoabout1860veryfewpracticaldevelopmentsarerecorded.AnumberofFrenchandEnglishpatentsweretakenout,referringtohydrogenmotors,butarenotofmuchpracticalvalue.

Lenoir's patent, dating from 24th January 1860, refers to a form of engine which receivedconsiderable commercial support, and consequently became very popular. Amanufacturer, namedMarinoni,builtseveraloftheseengines,whichweresettoworkinParisinashorttime.Then,duetosuddendemand, theLenoirCompanywas formed toundertake themanufactureof theseengines. Itwasclaimedthata4-horse-powerenginecouldberunatacostof3·4shillingsperday,orjustonehalf the cost of a steamengine using 9·9 pounds of coal per horse-power per hour.Many similarexaggerated accounts of their economy in consumption were circulated, and the public, on thestrengthofthesefigures,bought.

Itwasunderstood that 17·6 cubic ft. of gaswere requiredper horse-powerper hour, but itwasfoundthatasmuchas105cubicft.wereoftenconsumed.Thediscrepancybetweenthestatedfiguresandtheactualperformanceoftheenginewasadisappointmenttotheusingpublic,and,asaresult,theLenoirenginegotabadname.

Hugon, director of the Parisian gas-works, who, together with Reithmann, a watchmaker ofMünich,hotlycontestedLenoir'sprioritytothisinvention,broughtoutamodificationofthisengine.Hecooledthecylinderbyinjectingwateraswellasusingawater-jacket,andusedflameinsteadofelectricignition.Theconsumptionwasnowbroughtdownto87·5cubicft.

AtthesecondParisianInternationalExhibition,1867,anatmosphericengine,inventedbyOtto&Langenabout this time,wasshown. In thisenginea freepistonwasused inaverticalcylinder, theformerbeingthrownupbytheforceoftheexplosion.Theonlyworkdoneontheup-strokewasthattoovercometheweightofthepistonandpistonrod,andthelatterbeingmadeintheformofarack,engagedwithatoothedwheelontheaxleasthepistondescended,causingthefly-wheelandpulleytorotate.

BarsantiandMatteucciwereengagedindevisingandexperimentingwithanengineverysimilartothissomeyearsbefore,butOtto&Langen,nodoubt,workedquiteindependently.Barsanti'senginenever became a commercial article;whileOtto&Langen's firm, it is said, held their own for ten

Page 9: Gas Oil Engines

years,andturnedoutabout4000engines.In1862theFrenchengineer,BeaudeRochas,laiddownthenecessaryconditionswhichmustprevailinordertoobtainmaximumefficiency.Hispatentsaystherearefourconditionsforperfectlyutilisingtheforceofexpansionofgasinanengine.

(1)Largestpossiblecylindervolumecontainedbyaminimumofsurface.

(2)Thehighestpossiblespeedofworking.

(3)Maximumexpansion.

(4)Maximumpressureatbeginningofexpansion.

Thesearetheconditionsandprinciples,brieflystated,thatcombinetoformthenowwell-knowncycleuponwhichmostgasenginesworkatthepresenttime.

Itwasnot until 1876, fifteenyears after theseprinciples hadbeen enumerated, thatOtto carriedthem into practical effect when he brought out a new type of engine, with compression beforeignition, higher piston speed,more rapid expansion, and a general reduction of dimensions for agivenpower.Duetothisachievement,thecycleabovereferredtohasalwaysbeentermedthe"Otto"cycle.

Page 10: Gas Oil Engines
Page 11: Gas Oil Engines

CHAPTERII

THECOMPONENTPARTSOFANENGINE

Having recounted very briefly the chief points in the development of the gas engine from itsbeginning,wemayproceedtodealwithmattersofperhapsmorepracticalinteresttothosewhoweare assuming have had little or no actual experience in making or working internal combustionengines.

Themoderngasenginecomprisescomparativelyfewparts.Apartfromthetwomaincastings—the bed and cylinder—a small engine, generally speaking, consists of four fundamentalmembers,viz.,thevalvesandtheiroperatingmechanism,thecamsandlevers;theignitiondeviceforfiringthecharge; and the governing mechanism for regulating the supply and admission of the explosivecharge.Thereare innumerabledesignsofeachoneof theseparts,andno twomakesarepreciselyalike in detail, as every maker employs his own method of achieving the same end, namely, theproductionofanenginewhichcomprisesmaximumefficiencywithaminimumofwearandtearandattention.

Therefore,beforedealingwitheachof theseprimaryparts inanarbitrarymanner,andwith thecycleofoperations indetail,wepropose tomakethereaderfamiliarwith thegeneralarrangementand method of working which usually obtains in the smaller power engines. In the followingillustrationsthesepartsareshown.A(fig.1)istheignitiondevicewhichcarriestheignitiontubetofirethecharge.HandI(fig.2)arethemainvalves,andGC(fig.1.)isthegas-cock.Thesideorcamshaft N (sometimes called the 2 to 1 shaft), the camswhichmove the leversM, the latter in turnoperatingthevalves,andcausingthemtoopenandcloseatthepropertime,areshowninfig.11.Abracketbolteduptothesideofcylinderformsabearingforoneendofthesideshaft,andalsocarriesaspindleatitslowerendonwhichtheleversoscillate,transmittingthemotionimpartedtothembythecamstothevalves.Themaincylindercastingandthebedneednodescription.Insomecasesthebedisintwoportions,thoughnowagreatmanymakersarediscardingthelowerportionaltogether,havingfoundthatitischeaper,andquiteassatisfactory,touseabuilt-upfoundationinstead,and,ifnecessary,tocutatroughforthefly-wheeltorunit.Thisarrangement,however,onlyobtainswherelarger engines are concerned. A half-compression handle by which the exhaust cam is movedlaterallyonthesideshaftasrequiredisnotneededonverysmallengines.

Page 12: Gas Oil Engines

FIG.1.—GeneralArrangementofaGasEngineandAccessories.

Furtherreferencewillbemadetothisinanotherchapter,and,althoughthisisnotanecessityonasmallengine,itisalwaysemployedonenginesover2B.H.P.Infig.1,HWisthecoolingwateroutletandCWtheinlet.AsmalldraincockisshownatDC,throughwhichthewaterinthecylinderwater-jacketmaybedrawnoffwhenrequired.Thepipes leading to the inletandoutletof thissupplyareconnectedtothecoolingwatertankbymeansofacoupleofbroad,flatnutsandleadwashers,oneinsideandtheotheroutsidethetank,thelatter,whenclampedupwell,makingaperfectlywater-tightjoint.Theoutletpipemakinganacuteanglewiththesideof tank, thewashersusedthereshouldbewedge-shapeinsection.Itisalsodesirabletofitastop-cockSC,sothatthepipescanbedisconnectedfromtheengineentirely,orthewater-jacketemptiedwithoutrunningthewholeofthewateroutofthetank.TheexhaustpipeEPismadeupofgas-barrel.Itshouldleadfromtheenginetothesilencerorexhaustbox(ifoneisfoundtobenecessary)asdirectlyaspossible,i.e.,withnomorebendsthanareneeded,andwhatthereareshouldnotbeacute.Thesilencercanbeinsideoroutsidetheengine-room,whicheverismostconvenient;butbothitandtheexhaustpipingshouldbekeptfromalldirectcontactwithwood-work,andatthesametimeinareadilyaccessibleposition.

Beyondtheexhaust-pipeandboxandthewater-tank,thegasbagGBandgasmeter(wheresmallpowers are concerned, the ordinary house or workshop lighting meter may be used withoutinconvenience)aretheonlyotheraccessorieswhichareincludedinasmallinstallation.

Page 13: Gas Oil Engines

FIG.2.—ASectionofaGasEngine.

Fig.2givesasectionalview,showingthecylinderandliner.Thelatterisaverydesirablefeatureinanytypeofgasengine,butespeciallyinthelargersizes;foratanyfuturetime,shoulditbefoundnecessary to re-bore the liner, it can be removed with comparative ease, and is, moreover, morereadilydealtwithinthelathethanthewholecylindercastingwouldbe.

Thelinerisvirtuallyacast-irontube,withaspeciallyshapedflangeateitherend.Atthebackendthe joint between it and the cylinder casting has to be very carefully made. This is a water andexplosionjoint;henceithasnotonlytopreventwaterenteringthecylinderfromthewater-jacket,butalsotobesufficientlystrongtowithstandthepressuregeneratedinthecylinderwhenthechargeisfired. For this purpose specially prepared coppered asbestos rings are used,whichwill stand bothwaterandintenseheat.Sometimesacopperringaloneisemployedtomakethejoint.Atthefrontendthelinerisjustagoodfit,andentersthebedeasily,andacoupleofboltsfittedincorrespondinglugsontheliner,passthroughthebackendofcylindercasting,sothatbytighteningupthesethejointatback end is made secure. A small groove is cut on a flange, and a rubber ring, of about 1⁄4-in.sectionaldiameter, is insertedherewhenthe liner is fitted into thecylindercasting.Thismakes thewater-jacketjointatthefrontend.

FIG.3.

FIG.5.

Page 14: Gas Oil Engines

FIG.4.

Lugsareprovidedonthebedandcylindercastings,andareboredtoreceivesteelbolts—threearesufficient, provided themetal in and around these lugs is not pinched. In some cases a continuousflangeisprovidedonbothbedandcylinder,andanumberofboltsinsertedallthewayround.This,however,isunnecessary,andhasasomewhatclumsyappearance.Whentheseboltsaretightenedup,the cylinder and liner are clamped firmly to the bed; but the liner being free at the open end, canexpandlongitudinallywithoutcausingstressesinthecylindercasting.

ThecombustionchamberKisvirtuallypartofthecylinder,andhasapproximatelyequaltoone-fourththetotalvolumeofthecylinder.Theshapevariessomewhatindifferentmakesofengines;insomeitisrectangular,withallthecornerswellroundedoff;inothersitispracticallyacontinuationof thecylinder, i.e., it iscircular incross-section,with thebackendmoreor less spherical;while,again, it ismadeslightlyovalincross-section;butineverycasethecornersshouldbewellcurvedandroundedoff,sothatthereisnoonepartwhichisliabletobecomeheateddisproportionatelywiththerestofthecasting;infact,inthewholecylindercastingthereshouldbenosuddenchange,butauniformity in the thickness of the metal employed. This point should be carefully remembered,although it appliesmoreparticularly to thoseparts of the casting subjected tohigher temperaturesthantherest.

Themainbearings areusuallyofbrassorgun-metal, and are adjusted for running in the samemannerasanysteamorotherengineswouldbe.The"brasses"areinhalves,andarehelddownbythecast-ironcaps,asshowninfig.1.

Thesebearings require extremely little attention, anddonot show thewear and tearof runningnearlysosoonastheconnecting-rodbrasses.These,too,areusuallyofbrassorgun-metal;buttherearevariousformsofconstructionemployedinconnectionwiththebackendorpistonpinbearings.On very small engines the connecting rod is swollen at the back end in the forging, and thenmachinedupanddrilled,asshowninfig.3.Inthisholethebrassesareinsertedafterbeingscrapeduptoagoodfitonthepistonpin.

Aflatiscutononeofthebrasses,andasetscrewisfitted,asshown,topreventanymovementofthelatterafterthefinaladjustmenthasbeenmade.Alocknutshouldbeusedinconjunctionwiththissetscrew.Anothermethod,andonemoregenerallyusedonlargerengines,isshowninfig.4.Inthiscase thebrassesare larger than in the former,where theyarevirtuallyasplitbush;here theyhaveholesdrilledinthemtotakethebolts,thelatterusuallyandpreferablybeingturneduptotheshapeshowninfig.5.

Page 15: Gas Oil Engines
Page 16: Gas Oil Engines
Page 17: Gas Oil Engines

CHAPTERIII

HOWAGASENGINEWORKS

Thegasengineofthepresentday,althoughfromastructuralpointofviewisverydifferenttotheearlyengine,oreventhatoffifteenyearsago,is,inrespecttotheprincipleuponwhichitworks,verysimilar.ThegreaternumberofsmallerpowerenginesinuseinthiscountryworkonwhatisknownastheOttoorfour-cycleprinciple;anditiswiththisclassofengineweproposetodeal.

Referencetothevariousdiagramsinthetextwillhelpconsiderably,andmakeitaneasymatterforanyreaderhithertototallyunacquaintedwithsuchenginestoseewhyandhowtheywork.

Coal-gas consists primarily of five other gases, mixed together in certain proportions, theseproportionsvaryingslightlyindifferentpartsofthecountry:—Hydrogen(H),50;marshgas(CH4),38;carbon-monoxide,4;olefines(C6H4),4;nitrogen(N),4.

Gasaloneisnotexplosive;andbeforeanypracticalusecanbemadeofit,aconsiderablequantityofairhastobeadded,dilutingitdowntoapproximatelytenpartsairtooneofpuregas.Thismixtureisnowhighlyexplosive.

The readerwill dowell to bear these facts constantly inmind, especiallywhenhe is repairing,adjusting, or experimentingwith a gas engine.Wewish to emphasise this at the outset, because aconsiderationof thesefactswillkeepcroppingup throughoutallourdealingswith thegasengine,and ifoncea fairlyclearconception isobtainedofhowgaswillbehaveundercertainandvariousconditions,half,orevenmorethanhalf,our"troubles"willdisappear;thecrythatthegasenginehas"gonewrong"willbeheardlessoften,anduserswouldsoonlearnthatthegasengineisinrealityasworthyoftheirconfidenceasanyotherformofpowergeneratorincommonuse.

Buttoreverttotheexplanationofthecycleofoperations.Thecycleiscompletedinfourstrokesofthepiston,i.e.,tworevolutionsofthecrankshaft.

At the commencement of the first out-stroke (the charging or suction stroke) gas and air areadmitted to thecylinder through therespectivevalves(fig.6),andcontinue tobedrawninbywhatmay be termed the sucking action of the piston, until the completion of this stroke (the precisepositionoftheclosingandopeningofthevalveswillbereferredtolateron).Thenextstroke(fig.7)isthecompressionstroke.Allthevalvesareclosedwhilstthepistonmovesinwards,compressingthegases,untilattheendofthisstroke,andattheinstantofmaximumcompression,thehighlyexplosivechargeisfiredbymeansofthehottubeoranelectricspark,asthecasemaybe.Theensuingstroke—the second out-stroke of the cycle—is the result of the explosion, the expanding gases driving thepistonrapidlybeforethem;this,then,istheexpansion,orworkingstroke(fig.8.)

Page 18: Gas Oil Engines

FIG.7.—Compressionstroke,duringwhichallvalvesremainclosed.

FIG.8.—Secondoutstroke,showingpositionofvalvesduringworkingstroke.

FIG.6.—Commencementoffirstout-strokesuctionorchargingstroke.Gasandairvalveabouttoopen.

During the last—the second inward—stroke (fig. 9) the exhaust valve is opened,andthereturningpistonsweepsalltheburntgases (the product of combustion) out intotheexhaustpipeandsointotheatmosphere.This completes the cycle, and the piston,crank, and valves are in the same relativepositions as formerly, and the same seriesof operations is repeated again and again.Ofcourse,itisnotalwaysthecasethatbothairand gas valve are opened on the charging stroke; that depends upon the method employed togovern the speed of the engine. Supposing it were governed on the hit andmiss principle (to beexplainedhereafter),thegasvalvewouldbeallowedtoremainclosedduringthechargingstroke,andairalonewouldbedrawnintothecylinder,thencompressed,butnotbeingexplosivewouldsimplyexpand again on the working stroke, giving back nearly all the energy which was absorbed incompressingit,andfinallybeexhaustedinthesamemannerastheburntgasesare.

Page 19: Gas Oil Engines

FIG.9.—Secondinwardstroke,showingpositionofvalvesduringtheexhauststroke.

FIG.10.—Firstout-stroke,showingpositionofvalvesduringthechargingstroke.

Fig. 10 shows diagrammatically the position of crank, piston, and valves during the chargingstroke.

FIG.11.—CrossSectionofCylinder.

Page 20: Gas Oil Engines

In figs. 1 and 2we gave drawings of two gas engines, which are typical examples ofmodernpractice. Huge strides have been made in recent years in gas-engine work, as regards bothworkmanshipandefficiency,sothat to-daywehaveinthegasengineamachinewhosemechanicalefficiencycomparesfavourablywiththatofanyotherpowergenerator,andwhosethermalefficiencyisverymuchgreater.

FIG.12.—LongitudinalSectionofCylinder.

Figs.11and12showrespectivelyasectionalendandsideelevationofthecylinder,fromwhichitwillnotbedifficultforthereader,howeverunacquaintedhemaybewithgas-enginework,toseehowthevariousrequirementsandpeculiaritiesoftheengineshouldbeconsideredandprovidedfor.

Amostimportantdesideratuminanymachineorengineisthatitshallbeassimpleinconstructionas ever possible; complicated mechanism should only be introduced when such addition orcomplication compensates adequately for what must necessarily be a higher first cost, andincidentallythegreaterwearandtearandattentioninvolved.Figs.11and12showwhathasbeendonetosimplifytheconstructionofthegasengineinrecentyears.Themainfeatureinthiscaseistheveryget-at-ablepositionofthetwomainvalves—theairvalveFandtheexhaustE.Thesevalves,asmaybeseenfromthedrawing,arecapableofwithdrawalafterthecoverofthecombustionchamberhasbeenremoved.Thelatterisanironcasting,shapedandfaceduptomakeanabsolutelytightjoint;noasbestosoranypackingisusedtomakethisjoint—andisheldinplacebyfourstuds,asshown.Thus,

Page 21: Gas Oil Engines

allthatisnecessaryistoremovethefournuts,liftthecoveroff,thenpulloutthepinswhichkeepthespiralspringsinposition,andwithdrawthevalves.Thelatterareseateddirectontothemetalofthecylindercasting,thegun-metalbushesAandBactingasguides.FurtherreferencetoA(themixer),whichservesatwofoldpurpose,willbemadelateron.

Thegasvalveandcockaremountedinaseparatecasting,whichiscarriedbyacoupleofstuds,thejointbetweenthisandcylinderbeingmadewithapieceofrubberinsertion.Thegasentersatthegas-cock,passesthroughthevalveandportG,androundtheannularspaceinthebushor"mixer"A,previouslymentioned,andthencethroughanumberofsmallholesinsame,immediatelybelowtheseatoftheairvalveF.Atthesametime,pureairisdrawninviatheairbox(asexplainedhereafter),throughportL(fig.11),andthenceupthecentreofbushAandoverthesmallholesthroughwhichthegasisflowing.Thetwothenthoroughlymixandenterthecombustionchambertogetherastheairvalve F is opened. This device produces a perfectly homogeneousmixture,which conduces in nosmallmeasuretoperfectcombustionwhentheexplosiontakesplace,anduponwhich,toaverygreatextent,dependstheefficiencyoftheengine.Besidespossiblelossinthisdirection,however,thereisanothersourceofwastewhichcannotbeeliminated,and that is theheat takenawayby thecoolingwaterwhichsurroundsthecylinder.Asthislossisinevitable,thebestthingwecandoistomakeitassmall as possible. Theoretically, it would be no small advantage if we could work at very muchhighertemperaturesthanwedoatthepresenttime,anditisonlycertainmechanicaldifficultieswhichbarthewayandsoeffectuallypreventthealreadyhighthermalefficiencyoftheenginebeinggreatlyincreased.

Itisnoeasymattertoovercomethesedifficultiescompletely,butimprovementsinthisdirectionarecontinuallybeingmade,sothattroubleswhichattendedthegas-engineuseryearsagonolongerexist.

Allthatwerequireofthecoolingwateristhatitshallkeepcertainworkingpartsoftheengineatareasonabletemperature;forinstance,thecylindermustnotbesohotastodeprivethelubricatingoilofitspropertytolubricate,neithermusttheexhaustvalvebecomesohotastocauseittoseizeinthebush and stick up; but, beyond such considerations as these, the higher the temperature is at thecommencementofeachexplosionthemoreefficientwilltheenginebe.Theobject,then,istodoaslittle coolingaspossible, and to apply thecoolingeffect at the rightparts; hence thepassages andchambersthroughwhichthecoolingwatercirculatesshouldbesoarrangedthatthosewhichrequiretobekeptatalowtemperatureareincloseproximitytothecoolingwater.Onsomeoftheenginesofdaysgoneby, theexhaustvalvewascarried ina large ironcasting, this in turnbeingbolted to thecylinder casting and communicating with the combustion chamber by means of a port. Such anarrangement was found to be not only clumsy but inefficient; the water passages were small anddifficulttogetat;theyreadilyfurredup;andmoreover,thejointbetweenthiscastingandthecylinderwasnecessarilyawaterandexplosionjoint,andthefewerwehaveofthesethebetter.

The method—if it may be called a method—of overcoming or preventing the exhaust valvebecomingtoohotis,inthecaseoffigs.11and12,simplyoneofjudiciousarrangementanddesign.ThecoolingwaterentersbytheinletK(fig.11),andcirculatesroundtheexhaustvalveportXand

Page 22: Gas Oil Engines

valveE immediately, beforebecomingheated, thuskeeping thehottest of theworkingparts of theengineatasuitabletemperature;andthevalveseat,beingindirectmetalliccommunicationwiththecoldwater,doesnotbecomeburntorpitted.Ontheothersideof theexhaustvalvewehave theairvalveanditspassages,throughwhichcoolairiscontinuallybeingdrawn;thisalsohelpstokeeptheexhaustvalvecool.

From this, then,wemayconclude that overheatingof the cylinderwill notoccurundernormalconditions,givenanengineofgooddesign;but,ifthistroubledoesarise,wemaysafelylookfirstofall for some defect in the cooling water circulation. Some waters contain a greater amount ofimpuritiesthanothers,andconsequentlythewaterspacemayfurrupmorerapidlyinonedistrictthanin another. But this deposit, even under the worst conditions, accumulates very slowly, and theoperationofcleaningoutthewater-jacketisaveryinfrequentnecessity.Theexhaustvalve,however,maybecomeoverheatedif it isallowedtoget intobadcondition, i.e., leaky.Itsseatshouldbewelllooked after, or the hot gaseswill blow pastwhen it is presumably shut; and if this defect, slightthoughitmaybetobeginwith, isallowedtodevelop,boththeseat, thevalvehead,andthespindlewillbecomeburntawayandpitted,perhapsbadly,duetotheexcessiveheat.

Page 23: Gas Oil Engines
Page 24: Gas Oil Engines

CHAPTERIV

IGNITIONDEVICES

Theignitiondevicescommonlyemployedmaybedividedintothreemainclasses—themetaltube,theporcelain tube, and the electric ignition.These againmaybe subdivided:The first being eitherironornickel (hecknumas theyare sometimescalled); thesecondareof twokinds—single-endedand double-ended; and the third takes many forms which many of my readers are possibly wellacquaintedwith,suchasthemagneto,theinductioncoilandtrembler,andthehigh-tensionmagnetoignition, the latter device having been used successfully on various occasions, though not yetuniversallyadopted.

Thefirst-namedhaveoneortwoadvantagesoverthenickeltube.Theyareveryinexpensive,andareeasilyheatedtotherequiredtemperature;moreover,theycanbemadeathome,shouldoccasiondemand.Ontheotherhand,theyarenotsodurable,haveaveryuncertainlife,andconsequentlyneedrenewing frequently—their average life being not more than 60 working hours. Fig. 13 gives anoutline drawing of an iron tube, with its burner and chimney fixed in position. The tube is verysimilartoapieceof1⁄4-in.gas-barrel,closedupatoneendandataperthread(1⁄4-in.gas)cutontheother;infact,gas-barrelmaybeusedformakingthesetubesathome—andmeasureabout7or8in.overallItisscrewedintoafiringblock,whichinturnisscrewedintothecombustionchamberend,sothatwhenrighthomeitisinsuchpositionthatthetubestandsquitevertical.Thesectionofthetube,fig.13,showstheconditionitgetsintoafterhavingbeeninusesometime.Thebore,itwillbeseen,hasbecomealmostcompletelyclosedup,sothatthereispracticallynocommunicationbetweenthehotpartofthetubeandthecombustionchamber.Thisclosingupoftheboreisverygradual,anditisintheearlystagesofthisprocessthaterraticfiringislikelytooccur;sometimesthechargewillbesuccessfully firedandsometimesnot. Itmaybeaswell tomentionhere that the lengthof the tube,althoughtoacertainextentimmaterial,shouldneitherbeexcessivelylongnorabnormallyshort,thepreciselengthvaryingwiththesizeoftheengine.A1⁄4-in.tube,8ins.long,maybeusedsuccessfullyonenginesrangingfrom1⁄2to6horse-power,providedasuitableburnerisfittedenablingthetubetobe heated at any required spot. After the first charge has been fired, and the exhaust takes place,practically all the burnt gases are cleared out of the cylinder, but a small amount of these willgenerally remain in the tube and the bore of the firing block.On the ensuing compression stroketheseinertgasesarecompressedtothefarendofthetube,thusmakingwayfortheexplosivemixturetoreachthehotportion,andexplode,thussendingajetofflameintothemainvolumeofthemixturewhich is immediately ignited.Hence there isnoadvantage inhavinga tube too long,while,on theotherhand,itmustnotbetooshort.

Page 25: Gas Oil Engines

FIG.13.

FIG.14.

FIG.15.

Theasbestoslining,showninfig.13,maybeofvariousthicknesses,accordingtothesizeofthechimneyandthetube;thereasonforthiswillbeapparenttomany;butbeingamostimportantfactor

Page 26: Gas Oil Engines

intheheatingofthetube,andconsequentlytheworkingoftheengine,itwillbeadvisabletodealwiththispointmorefully.

Duemainlytothepeculiarbehaviourofirontubesunderheatandinternalpressure, it isalwaysadvisable to look to them first of allwhen the engine shows signs ofmissing fire; and to alwaysexamine the bore of a fresh one, and ascertain that it is perfectly clear before putting it in. Theadjustmentoftheignitiontube,althoughoneofthemostimportantandnecessarytobemadeonthewholeengine,isinitselfaperfectlysimplematter.Itmustbeunderstoodthattheignitiontubecannot,withtheordinarymeansatourdisposal,bekeptattoohighatemperature;butitmustnotbeassumedthateitherthesizeoftheflame,orthetimetheflamehasbeenalight,isconclusiveevidencethatthetubeis,oroughttobe,sufficientlyhottofirethechargesuccessfully.Itisanuncommonthingtohearamanexclaim—afterithasbeenpointedoutthathistubeispracticallycold—"Why,it'sbeenalightforhours!"

Ifsuchisthecasewithyou,reader,youmayveryrightlyassumethattheburnerisnotproperlyadjusted,andsodoesnotgivetherightkindofflame.

Inorder toget thehottestpossible flame, thequantityofgasandairmustbemixed in the rightproportions. A common fault is that there is too much gas allowed to flow through the nipple,comparedwith theamountofairbeingdrawninat theairaperture, fig.13.Theresult is,wegetaflameofgreatlength,butonewhichisnotatallsuitedtoourrequirements;andinsteadofgivingupitsheattothetubeandtheasbestosliningofthechimney,alargeamountofgaswearepresumablyburninginthechimneyisnotbeingburntthereatall,for,onapplyingalightjustabovethechimneytop,aquantityofthisgaswearewastingwillbeseentoburnwithaflickeringblueflame.

Toputmattersright,itisnecessarytodooneoftwothings—eithercutdownthesupplyofgasorincreasetheair-supply.Providingtheairapertureisnormal,i.e.,thesamesizeasitwasoriginally,itisbettertoadjustthegas,whichmaybedonebytappingupthenippleN,asindicatedintheenlargedsketch,fig.14,untiljusttherightamountofgascanflow.

Asarule,ifthereistoomuchair,theflamewillburnwithaloudroaringnoise,andisliabletofireback.Thenippleshouldthenbeopenedoutwithasmallreamer—thetangofasmallfile,groundtoalongtaperpoint,makesanadmirabletoolforthispurpose.Whethertheburnerisoftheordinarybunsentype,ortheringorstovetype, theaboveremarksapply,asineverycasetheflowofgasisgovernedbythesizeoftheorificethroughwhichitflows.

There isnoneed touseanythingbeyonda touchofoilwhenputting inanew tube, inorder tomake a perfectly tight joint; white or red lead are quite unnecessary, and are liable to make it atroublesomematter to remove the tubeon futureoccasions.Neither shouldundue forcebeappliedwhenputtinginnewtubes;itisliabletowearthethreadinthefiringblock,whichresultsinapartialstoppageof theignitionhole,as indicatedinfig.15.Thisisespeciallythecaseifwehappentogetholdofatubewithitsscrewedpartslightlysmallerthanusual.

Theasbestoswithwhichthechimneyislinedshouldbeabout1⁄8in.thick,and,whenrenewing,the

Page 27: Gas Oil Engines

samethicknessshouldbeusedasoriginally.Athickerboardwillreducetheannularspaceroundthetube,andwillhaveachokingeffectontheflame—muchthesameasreferredtoabove,whenthereistoomuchgasandnotenoughair.Asimplemethodofliningthechimneyistocutablockofwoodtothe inside dimensions of the chimney, less 1⁄4 in. in width and thickness, then soften the asbestoscardboardbyimmersinginwater,andbenditroundthewood,cuttingofftotherequiredsize,i.e.,tillthetwoedgesformaneatbuttjoint.Itcanbeallowedtoremainonthemoulduntildry—whenitwillretainitsshape—orcanbeputintothechimneystraightaway,ifitiswantedforuseimmediately.Inthelattercase,however,itwillbesomefifteenminutesorsobeforethetubewillattainitsworkingtemperature.Asbestosliningsgraduallybecomewornandragged,andsmallflakesareapttodetachthemselvesandfalldowninto theburner,which,ofcourse,prevents theflameplayingas it shouldaroundthetube.Insuchcasesitisnotalwaysnecessarytofitanewlining;ifthechimneyisremoved,the loose flakes shaken out and the asbestoswell damped and patted downwith awoodenor steelfoot-ruleorothersuitablyshapedtool,itwillbefitforanotherlongspellofwork.

The nickel or hecknum tubes are treated in the samemanner as the iron, but, aswementionedbefore,aremoredurable,butrequiremoreheatingtogetthemuptoaworkabletemperature.Theirgreaterfirstcostiscompensatedtosomeextentbymakersinsomecasesguaranteeingthemforsixmonths.

Oftheporcelainignitiondevices,wewilldealwiththedouble-endedtubefirst,itbeingthemorecommonly used of the two in this country. This form of tube is usually about 3 in. long, 1⁄2 in.diameter,andopenatbothends.Itmaybemountedinametalcasting,informnotunlikethesmallgasstovesforheatingsolderingirons.Itisheatedthegreaterpartofitslengthbyacoupleofrowsofgasjets,andisfrequentlysurroundedbyanasbestoslining.Thewholearrangementisinrealityatinyfurnace.Wheninpositionforworking,oneendofthetubeisopentotheignitionpassageleadingandcommunicating with the combustion chamber, while the other end is sealed, through butting upagainstametalcaporplate.Anasbestoswasher is interposedbetween the tubeateachendand themetal it bears against, thusmakingamoreor less flexible joint.A thumbscrew is arrangedat theoutsideendofthetube,bymeansofwhichpressurecanbeappliedtoclampitupbetweenthewasherstothedesiredextent.Somecarehastobeexercisedinadjustingthisformoftubeforrunning.Whenheatedtotheworkingtemperatureit,ofcourse,expands,sothat,iftighteneduptoomuchwhencold,itisunderafairlyhighcompression;andwhentheengineisstarted,andtheexplosiontakesplace,itnotinfrequentlybursts,ifthereisnotsufficient"give"inthewasherstoallowfortheexpansion.Ontheotherhand,ifnotclampedupsufficientlytighttostartwith,whentheexplosionoccurs,thewasheratoneoreachendisblownout.Thisadjustmenthastobemadetoanicety,and,althoughasomewhatdifficultmatter,successmaybeattainedafteroneor twotrials. It isadvisable,afteranewtubehasbeenputin,tostartuptheenginegently,i.e.,withlessthanthenormalsupplyofgas,andincreasetothe full amount gradually whilst running. This may be done by simply opening the gas-cock onenginepartiallyinthefirstplace.

Thesingle-endedporcelaintubeisnotsowellknownhereasonthecontinent;why,wecannotsay;certainlyitispreferableineveryway.Wegiveafewillustrations,showingthemethodofusingthis

Page 28: Gas Oil Engines

FIG.16.

tube.

Figs.16and17showthegeneralarrangementoftubeandchimneyandthemannerinwhichtheyare fixed to thecylinder.Thedeviceconsistsprimarilyof threeparts—thebodyorchimneyB, thecoverC,andthetubeitselfT.Thebodyisalightironcasting,carriedbyacoupleofstudsSS,whichareeitherscrewedintothefiringblockF,ordirectintothemetalofthecylindercastingifnofiring-blockisused;thelattermayverywellbedispensedwithinthesmaller-sizedengines.

Thetubeismadeofthinporcelain,slightlybell-mouthedatitsopenend,andismountedinathickmetal washerW, as shown in fig. 18 in section, the joint beingmadewith a little asbestos paper,moistened.

TheblockFandthefaceofthebodyB(fig.16)arerecessedtotakethewasherWeasily,butthedepthofbothrecessestakentogethermustbeabout1⁄16 in. lessthanthethicknessof thewasherW;thus,whenthetubeisplacedinpositionbetweenthebodyBandtheblockF,andtheformerscrewedupbymeansofthetwonuts,asshowninthefigure16,theeffectistoclampthewasherwhichcarriesthetube,butnottheporcelaintubeitself.

Page 29: Gas Oil Engines

FIG.17.

Page 30: Gas Oil Engines

FIG.18.

Thelatterisleftperfectlyfreetoexpand;andyet,owingtoitsparticularshape,thepressureinthecylinderduringthecompressionandexplosionstrokeonlytendstomakethejointbetweenthetubeandwashermoresecure.TheactionofthisignitiondevicedependsuponthetubeheaterH,whichismerelyasmallbunsenburner,theflameofwhichimpingesonthetubeatoneparticularspot,raisingittoaveryhightemperature—almostwhiteheat.Mostofmyreaderswillknowtheformationofthebunsenflame.Itincomposedoftwodistinctzones.Theinnerone,markedAinfig.18,isaperfectlycoldpartoftheflame,andappearstobeapale-bluecolouredcone.

Itistheouterzonewhichisthehotportionoftheflame,hencethispartonlymustbeallowedtoplayonthetube.ThetipoftheblueconeAmustbekeptabout1⁄4in.belowthetube,inordertoensurethehottestpartoftheflameimpingingpreciselywheretheheatisrequired.

Page 31: Gas Oil Engines

Thetotallengthofthewholeflameis, toacertainextent, immaterial;but,generallyspeaking,itshouldbeadjustedsothatthelengthoftheinnerconeAisabout1in.or1-1⁄4in.Thesamemethodswhichwedescribedintheearlypartofthischaptercanbeemployedintheadjustmentofthisburner,butsomecareshouldbeexercisedtogetthecorrectflamelength.

Theresultofallowingthecoldpartoftheflametoimpingeonthetubeisobservableinfig.18.Theblackspotindicatedonthedrawingactuallyappearsasablackorsootyspotwhenlookingatthetubeundertheseconditions;butinrealitynodiscolorationwhatevertakesplace,thespotdisappearingimmediatelytheconeAismadeshorter,ortheburnerHloweredinthechimneyB,sothatthetipofAisjustbelow,anddoesnottouchthetubeatall.

The adjustment of the length of coneAmaybe accomplished in twoways—(1) bykeeping thesupplyofgasconstant,andvaryingtheamountofairadmittedatapertureK,fig.18;(2)bykeepingthesupplyofairconstant,andvaryingtheamountofgasadmittedthroughnippleN.Thefirstmethodis to be preferred when it is necessary tomake any slight adjustment due to the variation of gaspressureduringtheday,andmaybeaccomplishedbyfittingasmallslidingshieldG,asshowninthefigs.16and17,andmovingitroundsothatitcovers,moreorless,theapertureK.ThusthelengthofconeAmaybeadjustedtoanicetyinaveryfewseconds.Thisshieldkeepsalldraughtsandpuffsofwindfromthefly-wheelawayfromtheaperture,andhelpstheflametoburnverysteadily.Inthefirstplace,ofcourse,theflamewillberegulatedbyopeningoutortappingupthenippleN(anenlargedsketchofwhichisgiveninfig.14),sothatconeAisjustabout1-1⁄4in.longwhenairapertureisfullopen;butoncethisisdone,anyfutureadjustmentcanbemadebythrottlingtheair-supply,orraisingorloweringtheburnerbodily,thesetscrewkeepingitinanydesiredposition(seefig.17).

From the foregoing remarks it will be seen that themost noteworthy features of this form ofignitionaretheeaseandcertaintywithwhichthetubecanbefixedinafewmoments;thatwhenthetwonutsonthestudsSShavebeentightenedupthereisnolikelihoodofthejointsbeing"blown,"for,aswe said before, only themetalwasher is clamped up, the porcelain tube itself being as free toexpandas itwasbefore. It is also at onceobviouswhen any adjustmentof the flame is necessary;thereneedbenouncertaintyastowhetherthetubeishotenoughornot.

Page 32: Gas Oil Engines
Page 33: Gas Oil Engines

CHAPTERV

MAGNETOIGNITION

Thethirdformofignitionwehavetodealwithistheelectric.

Thereareagreatnumberofdifferent typesmadeandused,but forgas-engineuseperhaps thatknown as themagneto ignition is themost satisfactory.With this form, neither accumulators, drybatteries,orsparkcoilsarerequired,andconsequentlyagreatersimplicityisarrivedatthanwouldotherwisebethecase.

Infig.19weshowdiagrammaticallytheordinaryformofmagnetomachine.Virtuallyitisasmalldynamowhich is fixed to the sideof cylinder casting, and is operated in themanner shortly tobedescribed.Aswe do not propose to enter intomore than a brief explanation ofwhy and how thisapparatus generates current to produce the required spark, perhaps a simple analogy will makemattersmostintelligibletoanyreadernotwellacquaintedwithelectricalphenomena.Weknowthatwhenacurrentofelectricityisflowinginawire,andthewirebesuddenlybroken,asparkwilloccuratthepointofbreakage.Thisfactmaybeobservedinanordinaryelectricbellwhenringing;atthetipof thecontactbreakeranumberof tinysparksmaybeseentooccur,duetotherapidmakeandbreak of the current flowing in the circuit. Precisely the same action takes place in ourmagneto-igniter,but,insteadofamultitudeoftinysparks,weproduceoneatatime,atdefiniteintervals,viz.,atthecommencementofeachexplosionstroke.

FIG.19.

Inthelaterformofmagnetomachinesthereisasoftironsleevebetweenthemagnetpolesandthearmature.Theformerisconnectedtoasystemofleversbywhichareciprocatingmotionisimpartedto itbymeansofasuitablyarrangedcamonthesideshaft. Ithasbeenfoundthatbetterresultsareobtainedby causing themagnetic field tomove relative to the armaturewinding than tomove thelatterthroughastationaryfield.Referencetothediagrams,figs.20and21,willmakethisclear.

Page 34: Gas Oil Engines

Infig.19thecamCisshownjustonthepointofallowingtheleverLtoflybackintoitsnormalposition,due to theactionof the springscomprisingadashpotS.As thecamrotates, itpushes thelever L to the left, the sleeve (or virtually the armatureA) is also rotated through a portion of arevolution comparatively slowly; but as soon as L is released, the sleeve (or armature) flies backagainalmostinstantaneouslyandforthemomentisgeneratingacurrentinthesamemanneraswouldanyordinarycontinuouscurrentdynamo.

FIG.20.

Page 35: Gas Oil Engines

FIG.21.

At the instant the maximum current is being generated, the circuit is broken by means of thecontactbreakerD,fig.19,whichweshowindetailinfig.22.Thelatterismountedontheendofthecombustionchamber,andconsistsoftwoparts,DandP.

Page 36: Gas Oil Engines

FIG.22.

D is an easy fit in theholebored to receive it, andhas amushroomvalveheadand seating, asshown,sothatitmovesreadilywhenstruckbytheprojectionEontherodR(fig.19);butyet,actinginthemannerofanon-returnvalve,itallowsnogastoescapewhentheexplosiontakesplaceinthecylinder.Disthereforeindirectmetalliccommunicationwiththeengineframeandearth.

Pisafixedmetalpin,carefullyinsulatedfromallcontactwiththeengineframeandearth.Tothispin one end of the armaturewinding is connected,whilst the other end is connected to the engineframe.

Thusaclosedcircuitisformed,andwhenthecurrentisgenerateditflowsfromoneterminalofmagnetothroughwiretopinP,ontoD,throughDtoearth(i.e.,engineframe),andsobacktootherterminalonmagneto.

Andas thecircuit isbrokenbetweenDandP,weobtainaspark,aspreviouslyexplained,whichmaybetimedtotakeplacebyadjustingthepositionofcamConsideshaftrelativelytothepositionofpiston.

Itmaybesaid that thepositionof themagneto-igniter is immaterial; itwillbefixedindifferent

Page 37: Gas Oil Engines

positions on different types of engines, and so long as the operating mechanism is simple andeffective,i.e.,asdirectasispracticable,itworkswell,andrequireslittleattention.ThetimingofthesparkwillbedealtwithinthechapteronCamsandValveSettings.

Page 38: Gas Oil Engines
Page 39: Gas Oil Engines

CHAPTERVI

GOVERNING

The devices for governing the speed of the enginemay be divided, broadly speaking, into twoclasses—theinertiaorhitandmissgovernor,andthecentrifugal.Ofthelattertypewewillgiveaninstancefirst.Infigs.23and24thegovernorgearisshowndiagrammatically,consistingofacoupleofweightsWWsuspended from a vertical spindle.These fly apartwhen caused to revolve by thebevelwheel gearingBB, and raise the sleeveS to a greater or lesser extent.A recess in the latterengages a lever arm L, through which the vertical movement of the sleeve S is converted into ahorizontalmovementofthesleeveT.ThelatteriscarriedbythevalveleverP,andisvirtuallyarollerwhichengageswithoneorotherofthestepsofthecamC,accordingtothespeedoftheengine.Theobjectofthisarrangementistokeeptheratioofairtogasuniformthroughoutallvariationsofload.ThegasandairvalveareshownasbothbeingoperatedbythesameleverP,theaccuratetimingofthelatterbeingobtainedbymeansofsetscrews.

Page 40: Gas Oil Engines

FIG.23.

Page 41: Gas Oil Engines

FIG.24.

MessrsDougill&Co.'senginesare fittedwithastepdowncamandgovernorsuchas this.Thecentrifugalgovernorisoftenarrangedsothatinsteadofthechargebeingmerelyreducedinvolume,thewholechargeiscutout,andnoexplosionwhatevertakesplace.(Inthisrespectthesameresultsareobtainedaswhenahitandmissgovernorisused,andthelatterformthereforeistobepreferred,especiallyonsmallengines,wherethedifferencebetweentheindicatedpowerandthebrakepowerisalways,evenunderthebestconditions,fairlygreat.)

Inthiscasethegovernor leveronlyoperates thegasvalve; theairvalvebeingopenedoneverychargingorsuctionstroke,whethergasisadmittedornot.

Anotherapplicationof thecentrifugalgovernor is tosuspendadistancepieceon theendof thegovernorlever,sothatatnormalspeedthisdistancepieceisinterposedbetweenthegasvalvespindleand the lever operating it. In that case the gas valvewill be opened. But if the speed is above the

Page 42: Gas Oil Engines

normal, the distance piece will be raised clear of the valve spindle, and the opening mechanism(drivenbyacamonthesideshaft)willsimplymoveforwardandrecedeagainwithoutevertouchingthegasvalve.

Thereareanynumberofmovementswhichhavebeen,andtherearemanymorewhichcouldbe,devisedtogivethesameresult;anditdependsprincipallyupontheformofengineinquestionwhichdeviceweadopt.

Thesimplestandmostdirectactionis,however,alwaysthebest;complicatedmechanismistobedeprecated,especiallyonsmallengines.Forthisreasonistheinertiagovernormoregenerallyfittedtosuchengines.

FIG.25.

Page 43: Gas Oil Engines

Asimpleformofthisgovernorisshowninfig.25.ThegasvalveVisshownonitsseating.ItisscrewedintoapeckerblockB,andpinnedasshown.Thelattershouldbeofcaststeel,temperedtoastrawcolour;orifmildsteelorironisused,itmustbewellcase-hardened,inordertoresistwear.ThepeckerP(alsotemperedhard)ismountedonthecast-ironweightW,whichinturnispivotedonthevalveleverL.ItwillbeseenthattheweightW(whichisonlyheldinthepositionshownbythespringS)will tend to lagbehindwhenasuddenupwardmotion is imparted to the leverL.Thus itdependsuponthedegreeofsuddennesswithwhichLmoveswhetherthepeckerPremainsinthesamerelativeposition to the lever as the latter travelsupwardsandengageswith thepeckerblockB,orwhether itmisses itandsimplyslidesover the faceof theblock.Theadjustmentof thespringS iseffectedbyscrewinguporslackingoutthemillednutsT;andonthedegreetowhichthisspringiscompresseddependsthesensitivenessofthegovernor,andconsequentlythespeedoftheengine.Toobtain accurate and steadygoverningwith this typeofmechanism it is essential that theweight beperfectlyfreeonitsspindle,andthatnothingbutthespringSholds,ortendstohold,itinthepositionshown.Onthisaccount it isadvisabletoprovidea"lip"onthepeckerblock,asshown,tokeeptheareaofcontactassmallaspossible.Thiseffectuallypreventsanysticking,shouldasuperfluityofoilhappentogetoneitherblockorpecker.ForsimilarreasonsthereshouldbesomeclearancebetweenAandthepecker,i.e.,thelattershouldonlybearatonepointandnotbedflatagainstA.

Anotherformofinertiagovernorisshowninfig.26ofthehitandmisstype,whichisemployedbyMessrsCapel&Co.onmanyoftheirengines.

Itconsistsofthreemainparts—thebrassarmLcarriedonastudD,onwhichitisfreetomove;theweightW,whichcarriesthepeckerPpivotedattheupperendofL;andthepeckerblockB,whichengagesthepeckerwhentheenginerequiresachargeofgas.

ThegoverningactionisdependentupontheshapeoftheoperatingcamfromXtoY.(Inthecasealready dealt with, the lever L serves to operate both air and gas valves, and so one cam only isnecessary; but in this instance thegasvalve is operatedby a separate cam, and agreater nicetyofadjustmentisobtainable.)

If thespeedof theengine is sufficientlyhigh, thearmL is thrust forwardat sucha rate that theweightWtends to lagbehind,with theresult thatP israisedabovethenotchinB,asshownbythedotted lines indrawing.On theotherhand,when thespeed is too low, thearmLwillnotbe thrustforwardwithsogreatadegreeofsuddenness,theweightWwillhavetimetomovewithL,andtherelative position ofW and P to L will remain the same. Hence, in the first case, when a furtherforwardmovement isgiven toLby thecam, thepeckerP isclearofB,andomits toopen thegasvalveV; in the second case, P engageswithB, and the gas valve is held open during the time theportionofcamYtoZispassingovertherollerRonarmL.

Thegreatdrawbacktosomeformsofgovernorsisnotthattheyfailtogovernwellwhennew,butthatnoprovisionismadetoensurethemworkingsteadilywhenabitworn.Theshapeofthecamhaseverythingtodowiththeregularworkingofthisformofgovernor.

Supposing our cam was of the shape

Page 44: Gas Oil Engines

FIG.26.

shown in fig. 27, i.e., the governing andopening portion all in one curve, it wouldcause thepecker tomoveboth forward andinanupward direction at the same time, sothat at themoment of engagingB, Pmightstill be moving in an upward direction,which would cause uncertainty of action,especially if the tips of the engagingmembers were at all blunt through wear;and, in all probability, P would fly off Bafterpartiallyopeningthegasvalve.

This behaviour is very undesirable, asthesmallquantityofgassoadmitted to thecylinderisquiteuseless,andasheerwasteisincurred. With the governing arrangementshowninfig.26, this troubledoesnotexist.Thecamissodesignedthat thefirst risefromXtoAdetermineswhetherornotthevalveistobeopened;thecurvefromAtoYisstruckfromthecentreofthesideshaft;thus,duringthatportionoftherevolutionthearmLisstationary,andthepeckeratthesameinstant takesupadefinitepositioneither in thenotch inBoron topof it,and is readytoopenthevalveifthespeedoftheengineissuchastorequireanexplosion,orsimplytoslideoverthetop of B, allowing the valve to remain closed. It is most interesting to observe the action of thisgovernor;whenanenginefittedwithoneisrunningveryslowly,thethreedistinctmovementsofthepeckerPmaybeclearlydiscernedastherespectiveportionsofthecampassoverthesmallrollerR.

FIG.27.

Page 45: Gas Oil Engines
Page 46: Gas Oil Engines

FIG.28.

CHAPTERVII

CAMSANDVALVESETTINGS

Withthegas,aswithanyotherkindofengine,thevalvesettingsareofprimaryimportance.Onverysmallenginesitisoftenthecasethatonlytheexhaustvalveisoperatedmechanically.

Again,thereareseveralwell-knownmakeswhichoperatethegasandexhaustmechanicallywhiletheairvalveisopenedbysuctionalone.Thoughopinionsdifferastowhichisthebestcoursetotake,there can be little doubt that, with all three valves mechanically operated, a greater nicety ofadjustmentisobtainablethanwouldbeotherwisepossible.Andprovidedtheworkingpartsareneatlymadeandfinished,theywilltakebutlittlepowertodrivethem;andsuchlosswouldbecompensatedby the additional power and efficiency obtained from the engine, due to satisfactory and correctadjustment.

In fig. 28 we give a diagram showing the exact positions of the crank when the gas, air, andexhaust valves open and close respectively, under normal conditions ofworking. The solid circlerepresents the first revolution of the crank shaft, starting from the commencement of the suctionstroke,and thedottedcircle thesecond revolution,duringwhich theexplosionandexhaust strokestakeplace;thedottedhorizontallineshowsthepositionofcrankatthebackandfrontdeadcentres.

Asaclearconceptionofwhycertainthingshappenundercertainconditionsismostdesirable,wewill firstdescribe theoperationofmarkingoff thecamswhichoperate therespectivevalvelevers,andthendiscusstheeffectofvarious"settings"ofthevalvesontherunningoftheengine.

Assuming that we are still dealing with theOtto cycle engine, the cam or side shaft willrevolveatpreciselyhalf thespeedofthecrankshaft.This2 to1motion isobtainedbymeansof toothed wheels, or a screw gear. In theformer case, where plain or bevel cog-wheelsareemployed, theone fixedon thecrankshaftmustbeexactlyhalfthediameteroftheoneonthe side shaft, i.e., it must have one half thenumberof teeth.On theotherhand, if a screwgear is used, the relative diameters of the twowheelsmayvary,butthepitchoftheteethontheone must be twice that of the other. Thesewheels sometimes have the teeth or thread

formedinthecasting,andsometimestheyarecutafteraplaincastinghasbeenmade.Thelatterkindare,needlesstosay,betterthantheformer,whichoftenrequirefilingupinordertomakeeverytoothalike,andensuresweetrunning.

Page 47: Gas Oil Engines

Weknowalready inwhat positionsour crankhas to be at theopening and closingof the threevalves,andwiththeaidofthediagram,fig.28,wecandeterminethesizeofthecams.Infig.29,Sisthe side shaft to which the cams have to be keyed, R the roller on valve lever, the latter beingrepresentedbythecentrelinesLL,asallwerequiretofindisthemotionthisleverwilltransmittothevalve,thespindleofwhichisshownatV.

Fig.30showsdiagrammaticallythepositionofcrankattheopeningandclosingoftheairvalve.Fromthisweseethattheanglethroughwhichthecranktravelsduringthetimetheairvalveisopenisequal to the obtuse angleABC.Now, as the side shaft S revolves at half the speed of crank, it isobviousthattheformerwilltravelthroughonlyhalfthatangleinthesamespaceoftime,i.e.,throughanangleequal toABD.WecannowtransferthisangleontoS,fig.29,anddrawtwolinesSE,SF,cuttinga circleGHJ, representing thebackof the cam,which latterpasses in frontof the rollerRwithoutcausinganymovementoftheleverL.

FIG.29.

Page 48: Gas Oil Engines

FIG.30.

FIG.31.

ItwillbeseenthatbydrawingalineformingatangenttothecircleGHJatFandanotheratE,andproducing these, theywillmeet at pointK. Consequently, as the side shaft rotates in the directionindicated,theleverLwillbegintoopenthevalveVwhenthecamisinthepositionshowninfig.29,reachamaximumopeningatK,and finallyclosewhen thecamhasmovedso thatpointE isnowwhereFwas.With a camof this shape, however, a considerable portionof the strokewouldhavepassedbeforethevalvewasraisedanyappreciabledistanceoffitsseat;itwouldonlybefullyopenforaninstant,viz.,whenKwaspassingoverR,andwouldbegintocloseagaindirectly.

Page 49: Gas Oil Engines

Moreover,iftheenginewererunningatevenaslowspeed,themotionimpartedtoleverLwouldbeindefinite;andthis,especiallyifthegovernorisfittedtotheairvalvelever,asinfig.25,isveryundesirable.Therefore,toobtainadefiniteopeningwemustsetoutthecam,asshowninfig.31.Inthisdiagramtherollerisshownstandingclearofthebackofcambyabout1⁄16in.AlineMNisthendrawn,formingatangenttobothrollerRandcircleGHJatpointsFandOrespectively.Thisgivesustheopeningportionofcam.ThenfromthecentreSwithradiusSFdescribethearcFE(showndottedinfig.31),andsetoff theanglerequired(ABD,fig.30),aspreviouslyexplained.ThroughpointEdrawalineformingatangenttocircleGHJ,andproduceittowardsP.Thislinegivesustheclosingportionof cam.ThedistanceW is of coursevariable, according to the amountof liftwegive thevalve.Bycomparingthesetwodiagramsitwillbeseenthatinbothcasesthevalvewillbeopenedthesame length of time, but in first case the motion will be indefinite and uncertain. In practice thecornersareroundedoffsomewhat,inordertoobtainasteadymotion;andwhentheaircamisalsothe governing cam, it is advisable to round off the opening face, as indicated in fig. 32.Upon theshape of this face both the sensitiveness and the life of the governor gear depends. If it is nicelyroundedoff, giving agradual rise, very little tension (or compression, as the casemaybe) of thecontrolling spring will be necessary to give the required speed to engine; whereas, if the rise issudden,thespringwillhavetobescreweduptighter,and,ifunevenandlumpy(i.e.,notafaircurve),theresultwill,ofcourse,beerraticgoverning.

FIG.32.

Acertainamountofclearanceshouldalwaysbeprovidedbetweentherollerandthebackofcam(compare figs. 29 and 31), that is, the roller should not bear against the cam, except during that

Page 50: Gas Oil Engines

FIG.33.

portionof thestrokeinwhichit isactuallyoperatingthevalve,viz., fromFtoE(fig.31).Asmallstop interposed between the lever and some convenient part of the engine, such as the side-shaftbracketbearing,answersthispurpose.

FIG.34.

Thesizeandshapeoftheexhaustcamisfoundinthesamemannerasabovedescribed;theanglethroughwhichitoperatesisgreaterthanthatoftheaircam,andisshowninfig.33.Afairmarginshould be allowed for filing ormachining these castings up; the shape and sizes arrived at by theabovedescribedmethodbeing finishedmeasurements. Fig. 34gives the outline of an exhaust camworkedoutfromthesettingdiagram,fig.33.

Page 51: Gas Oil Engines

FIG.35.

FIG.37.

FIG.41.

FIG.42.

Wemaynowconsidertherelativepositionsthesetwocamswilloccupywhenkeyeduponthesideshaft.Assumingthatwehavebothcamsfinishedtothepropershapeandsize,andthekeywaycutinthesideshaft,wecancommencetomarkoffthepositionofkeywayintheaircam.Withthecrankinthepositionshowninfig.35,theaircamisslippedontothesideshaftandbrought to thepositionshowninfig.32.Thekeywaybeingalreadycutinthesideshaft,thepositionforthatinthecammaybescribedoff,asshownbydottedlines(fig.32),thecamremoved,andthekeywaycut.Itisaswell,however,tocheckthismarkbyturningthecrankroundtopositionshowninfig.37,i.e.,theclosingofairvalve.Thesideshaftwillalsoturnthroughexactlyhalfthisangle,sothatwhenthecamisagainslippedonthelatter,thescribermarksandkeywayinshaftshouldbeexactlyinline,astheywereinfig. 32, and the fall of the cam—the closing portion—should just be touching roller R, but notsufficienttokeepthevalveopen(seefig.38).TheslightestmovementofthecrankfromthispointinaforwarddirectionshouldresultinalittleplaybeingfeltintheleverL,assumingthatthecamisalsomovedjustenoughtokeepthescribermarksinlinewiththeexistingkeyway.

Page 52: Gas Oil Engines

FIG.36.

FIG.38.

Page 53: Gas Oil Engines

FIG.39.

Bytheseoperationsitwillbeatonceevidentwhetherthecamistoolargeortoosmall.Supposingitistoosmall,wewillobtaintwosetsofmarksindicatingthepositionofkeyway,asshowninfig.39,anditisobviousthatwemustgivetheleverlessplaybyscrewingupthesetscrewsshowninfig.11.Theeffectofthisistocausethevalvetoopenearlierandcloselaterthanitwouldiftheplayweregreater; as it would were the operating portion of cam larger. A minimum amount of play mustalwaysbeallowed,however.Whentwosetsofmarksareobtained, themeanmustbe takenandthekeywaycutasshownbythethicklinesinfig.39.Theexhaustcaminlargerenginesisusuallymadewithaswellingontheopeningportion,asshowninfig.40,sothatthevalveisveryslightlyopenedsometimebeforethecrankhasreachedthepositionshowninfig.41.Fig.42showspositionofcrankatthecloseofexhaustvalve,andthetwolast-mentioneddiagramscorrespondwiththetwopositionsinwhichtheexhaustcamisshowninfig.34.Thesmalllumponthebackofexhaustcam,fig.40,isonlyrequiredonenginesabove3B.H.P.torelievethecompressiononthecompressionstrokewhenstartingup.BymovingtherollerRonvalveleverlongitudinally,sothatitengagesbothpartsofcamastheypassinfrontofit,theexhaustvalveisheldopenduringasmallportionofthecompressionstroke,usuallyclosingwhenthecrankhasreachedthebottomcentre.

Referringagaintofig.26,thisgasorgovernorcammaybesetout,andthekeywaymarkedonthesameprinciple as alreadydescribed for the air and exhaust valves.An endviewof the three camskeyeduponthesideshaftisgiveninfig.40A.Insmallenginesit isconvenienttohavetheairandexhaustcamsmadeinonecasting,whenonekeyonlywillberequired.Onsomeengines,insteadofemploying a movable roller or valve lever, the exhaust cam is fitted on side shaft with a"feather"—i.e., a headless key—and the cam being capable of longitudinal movement, suchmovementbeingcontrolledbyasmallleverorhandle,calledthehalf-compressionlever.

Page 54: Gas Oil Engines

FIG.40

FIG.40A

Having once thoroughly grasped theimportantpartthecamsplayintheworkingof the engine, it will be an easy matter toadjust the valve settings, and to keep themadjusted correctly. The effect of a wrongsettingwillthenbestrikinglyapparent.Onsmallenginesaseparatecamtooperatethegasvalveisnotanecessity;andthepracticeoffittingthegasvalvespindle(orthepecker,theeffectwouldbethesame)withadeviceforincreasingordiminishingitslength,isalsounnecessaryandunsound.

Thewearonawell-designedgasvalveoperatingmechanismispracticallynil;andeveniftherewaswear,theeffectwouldbetocausethevalvetoopenatriflelaterandclosesoonerthanitwouldotherwise,i.e.,itwouldremainopenashortertimeduringeachchargingstroke.Thisinturn(otherconditionsremainingthesame)wouldgiveusaweakermixture;andalthoughtooweakamixtureispreferabletoatoorichone,weshouldhavetoadoptsomemeansofincreasingtherichnessofthemixture;otherwisethemaximumpoweroftheenginewouldsoonbeseentodiminish.

Toget themixturenormalagainwemusteitherenlargethegasinletorcutdowntheair-supplysomewhat,andsokeeptheproportionsthesame.Thatistosay,thequalityofthemixtureisdependentupontherelativedimensionofthegasandairinlets.Weknowbyactualtrialthatifatthecompletionof the charging stroke the pressure in the cylinder is approximately that of the atmosphere, betterresultsareobtained thanwhen thepressure isconsiderablybelowthatof theatmosphere.Thus, thelargerwemaketheinletports(butstillretainingcorrectrelativedimensions)themorereadilywillthemixturebedrawnintothecylinderasthepistonmovesforward,tendingtocreateavacuum.Ofthetwocoursesopentoustoretainagoodmixtureitispreferabletoopenoutthegas-supply,forbycutting down the air-supply, and sucking the gas in, due to the partial vacuum being formed, weshould be keeping the proportions correct at the expense of reducing the total volume of theexplosivemixture(morestrictlyspeaking,thedensityofthecharge)admittedtothecylinder.

Under normal conditions it is not necessary to create a high vacuum to suck the gas into thecylinder,butitisaswelltounderstandwhatresultswewouldtendtoproduce,didweworkonthese

Page 55: Gas Oil Engines

lines.Ofcourse,withsmallhigh-speedenginesfittedwithsuctionairvalve,thevacuumishigherthanitwouldbeinslow-speedengineswithmechanicallyoperatedvalves.Ifwetakeanextremecaseasanexample,where,togetanygastospeakofintothecylindertheair-supplywouldhavetobecutdownorthrottledtoanabnormalextent,wewillrealiseatoncethatsuchasmallquantityofbothairandgas would have been drawn in, and consequently the mixture would be so rarefied that on thecompressionstrokethepressurewouldpossiblybeextremelylowandtotallyinadequatetoproduceefficient working. Moreover, working at such a high vacuum as this would not only prevent usobtaininganormalexplosioninthecylinder,butwouldupsettheworkingoftheexhaustvalve.Thelatterbeinghelddownonitsseatduringthesuctionstrokebymeansofaspiralspringwouldbeliftedoffitsseatbysuction(thepartialvacuuminthecylinder),andanyburntgaseswhichhappenedtobehangingaboutintheexhaustportorpipewouldbedrawnintothecylinderagain,andtendtodamptheensuingexplosion.Tooearlyclosingof theexhaustshouldbeavoidedalmostas rigorouslyastoolate.Thelatterwillaffecttheworkinginasimilarwaytotheexhaustbeingliftedonthechargingstrokebysuction;ontheotherhand,ifitclosestoosoon,theentirevolumeofburntgaseswillnothavebeensweptoutofthecylinder,andtheeffectwillagainbetodampthefollowingexplosion.

Thegasvalveopensjustafterthecrankisabovethebackcentreandclosesjustbeforethefrontcentreisreached,thatis,openingalittleaftertheairvalveandclosingashadebeforeit,thuseveryparticleofgasisusedinthecylinder,duetoadraughtofairbeingdrawninafterthegasvalvehasbeenclosed.

Thesettingsofthevalvebeingofprimaryimportance,nomatterwhatsizeenginewearedealingwith,andbeingalsothemostconfusingmatterforanyoneunacquaintedwithgasenginestograsp,itwillnotbeoutofplacetosuggestasimplemethodofcheckingthesesettings.

Let us begin by pulling the fly-wheel round backwards until we feel the piston is on thecompressionstroke,thenfromthispoint—thecrankbeingabout45°abovethefrontcentre—pullthewheel rounduntil thecrank is in theposition for theexhaustopening (see fig.28). In thispositionthereshouldbebuttheslightestplayin theexhaust lever,showingthat thevalveis justonpointofopening;andbykeepingone'shandontheleverwhilstthefly-wheelispulledroundveryslowly(itisagoodplantogetsomeoneelsetodothepullinground),itispossibletoascertaintheprecisepointatwhichthevalveopens.Nextpullroundtillthecrankisinthepositionfortheairvalveopening,andobservethatitissetcorrectly.Thengoontoatrifleabovethebackcentre,wheretheexhaustvalveshouldclose,andsoontilltheopeningandclosingofeachvalvehasbeenchecked.Itwillbenoticedthattheair,andsometimesthegas,valveopensbeforetheexhaustcloses.Thisoverlapisnecessary;anditwillbefoundthatthesmallertheengineandthehigherthespeedthegreaterthisoverlapwillbetoobtaingoodresults,althoughagooddealofindividualjudgmentmustbeusedinsettlingtheexactamountofoverlap,as therequisiteamountmay, toget thebestresults,varyindifferentenginesofpreciselythesamedimensionsandtype.

Whendealingwithengineswhichhavenoseparategasvalve—thegasbeingadmittedwiththeair,which is sometimes the casewithvery small engines—the abovenotes referring to thegas settingindependently,will,ofcourse,notholdgood.

Page 56: Gas Oil Engines

Itmaybementionedwithregardto the lumpontheopeningsideof theexhaustcam, that this ifoverdoneisfoundtobedetrimentalonlargeengines,andevenonsmallones.Ifitistoolarge,itwillcausebothexhaustvalveandseattobecomeburntandpitted,duetothesurfacebeingexposedtotheexceedinglyhightemperatureoftheexpandinggases.Ifitistoolarge,itisequivalenttoopeningtheexhaustvalvetooearly,andtheeffectisthesame,viz.,awasteofpoweranddamagetothevalveanditsseat.

FIG.43.

Page 57: Gas Oil Engines

FIG.44.—BrakeTesting.

Themethodofgrindinginthevalvestotheirseatswithemerypowderandoilissowellknownthat no further description is needed here.We give, however, in fig. 43 a sketch showing a veryexpeditiouswayofdealingwithverybadlywornorburntseats.Thesketchexplainsitself.Suchatoolisreadilymade;eventhecuttercouldbeturnedandfileduptoshapeandthenhardenedathome.Bylightlytappinginthetapercotterpinlittlebylittle,sufficientpressureisputonthecuttertomakeitaneasymattertocompletelyre-faceanoldseatorformanewone.AT-wrenchor"tommy"canbeusedtoworkthecutterspindle.Thelowerpartofthelattermustbethesamediameterastheexistingvalvespindle;thebushactsasaguide;andasthebevelofthecuttershouldbethesameasthatofthevalve,averylittlegrindinginwithemerypowderisrequiredtofinishthejoboff.

In fig. 44 we give a diagram showing themethod of testing for Brake H.P. of engine, as it isfrequentlyinterestingtomakesuchasimpletestafteranyalterationsoradjustmentshavebeenmade.

Twospringbalancesanda ropeor cord (according to the sizeof theengine), fittedwitha fewwood blocks as shown in section, fig. 44, to keep the rope on the rim of fly-wheel, is all that isrequiredforthistest.ThefollowingformulamaybeusedforarrivingattheB.H.P.:—

B.H.P.=(S1−S2)3·14×DxR/33000

S1=Readinginlbs.ofspringbalanceNo.1.

S2=Readinginlbs.ofspringbalanceNo.2.

D=Diameteroffly-wheelanddiameterofbrakeropeinfeet.

R=Revolutionsoffly-wheelperminute.

As3·14×D/33000willalwaysremainthesameforanygivenengineandgear,wemaycallthatexpressionC;thentheB.H.P.maybewritten—

B.H.P.=(S1−S2)CR.

Page 58: Gas Oil Engines
Page 59: Gas Oil Engines

CHAPTERVIII

OILENGINES

Thesmalloilengineispracticallythesameasthegasengine,withtheadditionofavaporiserforconvertingtheoil intogas,orvapour, tobeexplodedinthecylinder;consequentlytheonemaybeconvertedintotheotherinmanycaseswithoutmuchtrouble.Thedifficultyofproducinganefficientoil engine liesprincipally indevisinga satisfactoryand reliablevapouriser—onewhichwillworkequallywellunderallloads.Theheatsuppliedtothechambermustbesufficienttovaporisetheoil,but not great enough todecompose it.There arevariousmethodsofvaporising theoil, andmanytypesofvaporisersareemployedtoattainthesameend.Therearesomeinwhichachargeofoilisdrawnbysuctionintoahotchamberinwhichitisconvertedintovapourandatthesametimemixedwithasmallquantityofhotair;thisrichmixtureisthenpassedintothecombustionchamberoftheengine,inthesamemannerascoal-gaswouldbe,whereitisfurtherdilutedwithmoreairdrawninthroughtheairvalve.Otherarrangementscauseajetofoiltobeinjectedintoachambercontaininghotair,intheformofspray,whichimmediatelyconvertstheoilintovapour,andisthenpassedintothecylinder,compressed,andfired.Then,again,wecanpumpoilthroughasprayingnippleintothevapouriser(whichiskeptatasuitabletemperature)whilstthecylinderisbeingfilledwithaironthesuction stroke. On the following compression stroke the air is driven into the vapouriser, whichcommunicateswith the cylinder through a narrow neck, andmixes intimatelywith the oil vapour.Gradually,asthepressurerises,duetocompression,thechargebecomesmoreandmoreexplosive,untilatthecompletionofthisstrokeithasattainedtheproperproportionsofairandoilvapour,andisfiredbythetemperatureofthevapouriserandthatcausedbyahighcompression;thatis,thechargeis fired automatically; and once the engine is running, no heating lamp is required to keep thevapouriseratthecorrecttemperature.Itisnecessary,however,toraiseittotheworkabletemperatureatstarting.ThisisknownastheHornsby-Akroydmethod.

Capel'sarrangementisalsosimpleandefficient,andhastheadditionaladvantageofbeingcapableof being fitted to their existinggas engines, the conversionbeingmade in a very short time.ThisvapouriserconsistsprimarilyofatubularcastingA,ontheoutsideofwhichareformedaseriesofvertical ribs, shown inplan, fig.46, running towithina shortdistanceof the flangeatoneend, asshowninthesection,fig.45,thusprovidinganannularspaceCbetweentheupperendsoftheribsandtheflange.ThiscastingisenclosedbyanoutercasingB,whichfitswellover the inner tube. Ithasalsoanumberofsmallholesdrillednearthelowerendcommunicatingwiththechannelsbetweentheribs.Thus itwillbeseen thatwhen thegasvalve isopenedandsuction takesplace,air isdrawninthroughtheseholes,passesupintotheannularspaceCbelowthetopflange,fromtheretravelstotheopposite side of vapouriser, andmixeswith the oilwhich is also being drawn in through a smallnipperatN,fig.45.Boththenpassbetweenaseriesofpegs,wheretheybecomethoroughlymixed,andfinallypassontotheinletvalveV,fig.47,andsointothecylinder,wherethecompletechargeismixedupandcompressedand fired in theusualmanner. Iron ignition tubesmaybeused, andoneheatinglampservesadoublepurposeinkeepingthetubeandvapouriserhotatthesametime.This

Page 60: Gas Oil Engines

FIG.46.

FIG.45.

lampisfedbymeansofapumpactuatedfromthesideshaft.Theplungerofthepumpisloadedwithaspiralspring,whichmaybeadjustedtogiveanydesiredpressure,andiskeptconstantandsteadybymeansofanairvessel.Thispumpisshowninfig.48.Itisactuatedbymeansofarodandleverfromthesideshaftofengine.TheplungerPworksinabarrelB,whichiscarriedbyasmallreservoirR,thelatterbeingincommunicationwiththemainoiltankbymeansofthepipeH.

Page 61: Gas Oil Engines

FIG.47.

FIG.48.

Page 62: Gas Oil Engines

FIG.49.

FIG.50.

Page 63: Gas Oil Engines

FIG.51.

Theplunger is loadedwithaspiralspring,andhasaballvalve,asshown.Intermediatebetweenthissmallreservoirandthemainoiltankisanothersetofvalves,showninfig.49.Itwillbeseenthatthesuctionofthepumpwilldrawtheoilup,thesmallandlowerballvalve,ofcourse,allowingittopassfreely.Onthedownstrokethelowervalvewillbeautomaticallyclosed,andtheoilwillbeputunderpressure,thisbeingdeterminedbytheloadontheplungervalve,whichisadjustablebymeansofthescrewS,fig.48.WhentherequiredpressureinthepipeP,figs.45and49,hasbeenattained,theplunger valve lifts on each stroke and the surplus oil flows through the plunger into the smallreservoirR.ThelatterisataboutthesamelevelasanotherstillsmallerreservoirM(showninfigs.47and50),aflowofoilbeingestablishedbetweenthetwobymeansofapipeQ(seefigs.48and50).InthereservoirRisfittedanoverflowpipe,sothattheoilcannotrisebeyondacertainlevel;hencethe headof oil in the smaller oneM is always constant.On the suction stroke a partial vacuum isformedintheenginecylinder,consequentlythepressureinthevapouriserdropssomewhatbelowthatoftheatmosphere,andthissmalldifferenceinpressureisenoughtocausetheoiltoriseinthesmallpassageX,fig.45,beyonditsnormallevel,andoverflowintothevapourisingchamber,aspreviouslydescribed.ThevalveornipperNisshownopeninthediagram,fig.45,andallthatisrequiredtostoptheenginewhenrunningistodropthesmallhandleL,fig.45,whenthevalvewillclose,duetothespringS.Theairvesselshowninfig.49isincommunicationwiththepipeleadingtotheblowlamp.Apressuregaugecanalsobefitted,althoughitisnotinanywayanecessity.

Theratchetwheelandpawlshowninfig.48arepartofthelubricator.Thewheeldrivesabrassorgun-metalplug,producinganintermittentrotarymotion.Theplughasasmallholeinitsperiphery,

Page 64: Gas Oil Engines

whichbecomesfilledwithoilwhenitisattheupperpartofitstravel,andemptiestheoiloutintoadischargepipeT,when it is inverted,and is then ledawayandapplied to thepistonat therequiredspot.Fig.51showsthisarrangementinsection.

EndoftheProjectGutenbergEBookofGasandOilEngines,SimplyExplained,by

WalterC.Runciman

***ENDOFTHISPROJECTGUTENBERGEBOOKGASANDOILENGINES***

*****Thisfileshouldbenamed27286-h.htmor27286-h.zip*****

Thisandallassociatedfilesofvariousformatswillbefoundin:

http://www.gutenberg.org/2/7/2/8/27286/

ProducedbyStevenGibbs,GregBergquistandtheOnline

DistributedProofreadingTeamathttp://www.pgdp.net

Updatededitionswillreplacethepreviousone--theoldeditions

willberenamed.

Creatingtheworksfrompublicdomainprinteditionsmeansthatno

oneownsaUnitedStatescopyrightintheseworks,sotheFoundation

(andyou!)cancopyanddistributeitintheUnitedStateswithout

permissionandwithoutpayingcopyrightroyalties.Specialrules,

setforthintheGeneralTermsofUsepartofthislicense,applyto

copyinganddistributingProjectGutenberg-tmelectronicworksto

protectthePROJECTGUTENBERG-tmconceptandtrademark.Project

Gutenbergisaregisteredtrademark,andmaynotbeusedifyou

chargefortheeBooks,unlessyoureceivespecificpermission.Ifyou

donotchargeanythingforcopiesofthiseBook,complyingwiththe

rulesisveryeasy.YoumayusethiseBookfornearlyanypurpose

suchascreationofderivativeworks,reports,performancesand

research.Theymaybemodifiedandprintedandgivenaway--youmaydo

practicallyANYTHINGwithpublicdomaineBooks.Redistributionis

subjecttothetrademarklicense,especiallycommercial

redistribution.

***START:FULLLICENSE***

THEFULLPROJECTGUTENBERGLICENSE

PLEASEREADTHISBEFOREYOUDISTRIBUTEORUSETHISWORK

ToprotecttheProjectGutenberg-tmmissionofpromotingthefree

distributionofelectronicworks,byusingordistributingthiswork

(oranyotherworkassociatedinanywaywiththephrase"Project

Gutenberg"),youagreetocomplywithallthetermsoftheFullProject

Gutenberg-tmLicense(availablewiththisfileoronlineat

http://gutenberg.net/license).

Section1.GeneralTermsofUseandRedistributingProjectGutenberg-tm

electronicworks

1.A.ByreadingorusinganypartofthisProjectGutenberg-tm

electronicwork,youindicatethatyouhaveread,understand,agreeto

andacceptallthetermsofthislicenseandintellectualproperty

(trademark/copyright)agreement.Ifyoudonotagreetoabidebyall

thetermsofthisagreement,youmustceaseusingandreturnordestroy

allcopiesofProjectGutenberg-tmelectronicworksinyourpossession.

IfyoupaidafeeforobtainingacopyoforaccesstoaProject

Gutenberg-tmelectronicworkandyoudonotagreetobeboundbythe

termsofthisagreement,youmayobtainarefundfromthepersonor

entitytowhomyoupaidthefeeassetforthinparagraph1.E.8.

1.B."ProjectGutenberg"isaregisteredtrademark.Itmayonlybe

usedonorassociatedinanywaywithanelectronicworkbypeoplewho

agreetobeboundbythetermsofthisagreement.Thereareafew

Page 65: Gas Oil Engines

thingsthatyoucandowithmostProjectGutenberg-tmelectronicworks

evenwithoutcomplyingwiththefulltermsofthisagreement.See

paragraph1.Cbelow.TherearealotofthingsyoucandowithProject

Gutenberg-tmelectronicworksifyoufollowthetermsofthisagreement

andhelppreservefreefutureaccesstoProjectGutenberg-tmelectronic

works.Seeparagraph1.Ebelow.

1.C.TheProjectGutenbergLiteraryArchiveFoundation("theFoundation"

orPGLAF),ownsacompilationcopyrightinthecollectionofProject

Gutenberg-tmelectronicworks.Nearlyalltheindividualworksinthe

collectionareinthepublicdomainintheUnitedStates.Ifan

individualworkisinthepublicdomainintheUnitedStatesandyouare

locatedintheUnitedStates,wedonotclaimarighttopreventyoufrom

copying,distributing,performing,displayingorcreatingderivative

worksbasedontheworkaslongasallreferencestoProjectGutenberg

areremoved.Ofcourse,wehopethatyouwillsupporttheProject

Gutenberg-tmmissionofpromotingfreeaccesstoelectronicworksby

freelysharingProjectGutenberg-tmworksincompliancewiththetermsof

thisagreementforkeepingtheProjectGutenberg-tmnameassociatedwith

thework.Youcaneasilycomplywiththetermsofthisagreementby

keepingthisworkinthesameformatwithitsattachedfullProject

Gutenberg-tmLicensewhenyoushareitwithoutchargewithothers.

1.D.Thecopyrightlawsoftheplacewhereyouarelocatedalsogovern

whatyoucandowiththiswork.Copyrightlawsinmostcountriesarein

aconstantstateofchange.IfyouareoutsidetheUnitedStates,check

thelawsofyourcountryinadditiontothetermsofthisagreement

beforedownloading,copying,displaying,performing,distributingor

creatingderivativeworksbasedonthisworkoranyotherProject

Gutenberg-tmwork.TheFoundationmakesnorepresentationsconcerning

thecopyrightstatusofanyworkinanycountryoutsidetheUnited

States.

1.E.UnlessyouhaveremovedallreferencestoProjectGutenberg:

1.E.1.Thefollowingsentence,withactivelinksto,orotherimmediate

accessto,thefullProjectGutenberg-tmLicensemustappearprominently

wheneveranycopyofaProjectGutenberg-tmwork(anyworkonwhichthe

phrase"ProjectGutenberg"appears,orwithwhichthephrase"Project

Gutenberg"isassociated)isaccessed,displayed,performed,viewed,

copiedordistributed:

ThiseBookisfortheuseofanyoneanywhereatnocostandwith

almostnorestrictionswhatsoever.Youmaycopyit,giveitawayor

re-useitunderthetermsoftheProjectGutenbergLicenseincluded

withthiseBookoronlineatwww.gutenberg.net

1.E.2.IfanindividualProjectGutenberg-tmelectronicworkisderived

fromthepublicdomain(doesnotcontainanoticeindicatingthatitis

postedwithpermissionofthecopyrightholder),theworkcanbecopied

anddistributedtoanyoneintheUnitedStateswithoutpayinganyfees

orcharges.Ifyouareredistributingorprovidingaccesstoawork

withthephrase"ProjectGutenberg"associatedwithorappearingonthe

work,youmustcomplyeitherwiththerequirementsofparagraphs1.E.1

through1.E.7orobtainpermissionfortheuseoftheworkandthe

ProjectGutenberg-tmtrademarkassetforthinparagraphs1.E.8or

1.E.9.

1.E.3.IfanindividualProjectGutenberg-tmelectronicworkisposted

withthepermissionofthecopyrightholder,youruseanddistribution

mustcomplywithbothparagraphs1.E.1through1.E.7andanyadditional

termsimposedbythecopyrightholder.Additionaltermswillbelinked

totheProjectGutenberg-tmLicenseforallworkspostedwiththe

permissionofthecopyrightholderfoundatthebeginningofthiswork.

1.E.4.DonotunlinkordetachorremovethefullProjectGutenberg-tm

Licensetermsfromthiswork,oranyfilescontainingapartofthis

workoranyotherworkassociatedwithProjectGutenberg-tm.

1.E.5.Donotcopy,display,perform,distributeorredistributethis

electronicwork,oranypartofthiselectronicwork,without

prominentlydisplayingthesentencesetforthinparagraph1.E.1with

activelinksorimmediateaccesstothefulltermsoftheProject

Gutenberg-tmLicense.

1.E.6.Youmayconverttoanddistributethisworkinanybinary,

compressed,markedup,nonproprietaryorproprietaryform,includingany

Page 66: Gas Oil Engines

wordprocessingorhypertextform.However,ifyouprovideaccesstoor

distributecopiesofaProjectGutenberg-tmworkinaformatotherthan

"PlainVanillaASCII"orotherformatusedintheofficialversion

postedontheofficialProjectGutenberg-tmwebsite(www.gutenberg.net),

youmust,atnoadditionalcost,feeorexpensetotheuser,providea

copy,ameansofexportingacopy,orameansofobtainingacopyupon

request,oftheworkinitsoriginal"PlainVanillaASCII"orother

form.AnyalternateformatmustincludethefullProjectGutenberg-tm

Licenseasspecifiedinparagraph1.E.1.

1.E.7.Donotchargeafeeforaccessto,viewing,displaying,

performing,copyingordistributinganyProjectGutenberg-tmworks

unlessyoucomplywithparagraph1.E.8or1.E.9.

1.E.8.Youmaychargeareasonablefeeforcopiesoforproviding

accesstoordistributingProjectGutenberg-tmelectronicworksprovided

that

-Youpayaroyaltyfeeof20%ofthegrossprofitsyouderivefrom

theuseofProjectGutenberg-tmworkscalculatedusingthemethod

youalreadyusetocalculateyourapplicabletaxes.Thefeeis

owedtotheowneroftheProjectGutenberg-tmtrademark,buthe

hasagreedtodonateroyaltiesunderthisparagraphtothe

ProjectGutenbergLiteraryArchiveFoundation.Royaltypayments

mustbepaidwithin60daysfollowingeachdateonwhichyou

prepare(orarelegallyrequiredtoprepare)yourperiodictax

returns.Royaltypaymentsshouldbeclearlymarkedassuchand

senttotheProjectGutenbergLiteraryArchiveFoundationatthe

addressspecifiedinSection4,"Informationaboutdonationsto

theProjectGutenbergLiteraryArchiveFoundation."

-Youprovideafullrefundofanymoneypaidbyauserwhonotifies

youinwriting(orbye-mail)within30daysofreceiptthats/he

doesnotagreetothetermsofthefullProjectGutenberg-tm

License.Youmustrequiresuchausertoreturnor

destroyallcopiesoftheworkspossessedinaphysicalmedium

anddiscontinuealluseofandallaccesstoothercopiesof

ProjectGutenberg-tmworks.

-Youprovide,inaccordancewithparagraph1.F.3,afullrefundofany

moneypaidforaworkorareplacementcopy,ifadefectinthe

electronicworkisdiscoveredandreportedtoyouwithin90days

ofreceiptofthework.

-Youcomplywithallothertermsofthisagreementforfree

distributionofProjectGutenberg-tmworks.

1.E.9.IfyouwishtochargeafeeordistributeaProjectGutenberg-tm

electronicworkorgroupofworksondifferenttermsthanareset

forthinthisagreement,youmustobtainpermissioninwritingfrom

boththeProjectGutenbergLiteraryArchiveFoundationandMichael

Hart,theowneroftheProjectGutenberg-tmtrademark.Contactthe

FoundationassetforthinSection3below.

1.F.

1.F.1.ProjectGutenbergvolunteersandemployeesexpendconsiderable

efforttoidentify,docopyrightresearchon,transcribeandproofread

publicdomainworksincreatingtheProjectGutenberg-tm

collection.Despitetheseefforts,ProjectGutenberg-tmelectronic

works,andthemediumonwhichtheymaybestored,maycontain

"Defects,"suchas,butnotlimitedto,incomplete,inaccurateor

corruptdata,transcriptionerrors,acopyrightorotherintellectual

propertyinfringement,adefectiveordamageddiskorothermedium,a

computervirus,orcomputercodesthatdamageorcannotbereadby

yourequipment.

1.F.2.LIMITEDWARRANTY,DISCLAIMEROFDAMAGES-Exceptforthe"Right

ofReplacementorRefund"describedinparagraph1.F.3,theProject

GutenbergLiteraryArchiveFoundation,theowneroftheProject

Gutenberg-tmtrademark,andanyotherpartydistributingaProject

Gutenberg-tmelectronicworkunderthisagreement,disclaimall

liabilitytoyoufordamages,costsandexpenses,includinglegal

fees.YOUAGREETHATYOUHAVENOREMEDIESFORNEGLIGENCE,STRICT

LIABILITY,BREACHOFWARRANTYORBREACHOFCONTRACTEXCEPTTHOSE

PROVIDEDINPARAGRAPHF3.YOUAGREETHATTHEFOUNDATION,THE

TRADEMARKOWNER,ANDANYDISTRIBUTORUNDERTHISAGREEMENTWILLNOTBE

Page 67: Gas Oil Engines

LIABLETOYOUFORACTUAL,DIRECT,INDIRECT,CONSEQUENTIAL,PUNITIVEOR

INCIDENTALDAMAGESEVENIFYOUGIVENOTICEOFTHEPOSSIBILITYOFSUCH

DAMAGE.

1.F.3.LIMITEDRIGHTOFREPLACEMENTORREFUND-Ifyoudiscovera

defectinthiselectronicworkwithin90daysofreceivingit,youcan

receivearefundofthemoney(ifany)youpaidforitbysendinga

writtenexplanationtothepersonyoureceivedtheworkfrom.Ifyou

receivedtheworkonaphysicalmedium,youmustreturnthemediumwith

yourwrittenexplanation.Thepersonorentitythatprovidedyouwith

thedefectiveworkmayelecttoprovideareplacementcopyinlieuofa

refund.Ifyoureceivedtheworkelectronically,thepersonorentity

providingittoyoumaychoosetogiveyouasecondopportunityto

receivetheworkelectronicallyinlieuofarefund.Ifthesecondcopy

isalsodefective,youmaydemandarefundinwritingwithoutfurther

opportunitiestofixtheproblem.

1.F.4.Exceptforthelimitedrightofreplacementorrefundsetforth

inparagraph1.F.3,thisworkisprovidedtoyou'AS-IS'WITHNOOTHER

WARRANTIESOFANYKIND,EXPRESSORIMPLIED,INCLUDINGBUTNOTLIMITEDTO

WARRANTIESOFMERCHANTIBILITYORFITNESSFORANYPURPOSE.

1.F.5.Somestatesdonotallowdisclaimersofcertainimplied

warrantiesortheexclusionorlimitationofcertaintypesofdamages.

Ifanydisclaimerorlimitationsetforthinthisagreementviolatesthe

lawofthestateapplicabletothisagreement,theagreementshallbe

interpretedtomakethemaximumdisclaimerorlimitationpermittedby

theapplicablestatelaw.Theinvalidityorunenforceabilityofany

provisionofthisagreementshallnotvoidtheremainingprovisions.

1.F.6.INDEMNITY-YouagreetoindemnifyandholdtheFoundation,the

trademarkowner,anyagentoremployeeoftheFoundation,anyone

providingcopiesofProjectGutenberg-tmelectronicworksinaccordance

withthisagreement,andanyvolunteersassociatedwiththeproduction,

promotionanddistributionofProjectGutenberg-tmelectronicworks,

harmlessfromallliability,costsandexpenses,includinglegalfees,

thatarisedirectlyorindirectlyfromanyofthefollowingwhichyoudo

orcausetooccur:(a)distributionofthisoranyProjectGutenberg-tm

work,(b)alteration,modification,oradditionsordeletionstoany

ProjectGutenberg-tmwork,and(c)anyDefectyoucause.

Section2.InformationabouttheMissionofProjectGutenberg-tm

ProjectGutenberg-tmissynonymouswiththefreedistributionof

electronicworksinformatsreadablebythewidestvarietyofcomputers

includingobsolete,old,middle-agedandnewcomputers.Itexists

becauseoftheeffortsofhundredsofvolunteersanddonationsfrom

peopleinallwalksoflife.

Volunteersandfinancialsupporttoprovidevolunteerswiththe

assistancetheyneed,iscriticaltoreachingProjectGutenberg-tm's

goalsandensuringthattheProjectGutenberg-tmcollectionwill

remainfreelyavailableforgenerationstocome.In2001,theProject

GutenbergLiteraryArchiveFoundationwascreatedtoprovideasecure

andpermanentfutureforProjectGutenberg-tmandfuturegenerations.

TolearnmoreabouttheProjectGutenbergLiteraryArchiveFoundation

andhowyoureffortsanddonationscanhelp,seeSections3and4

andtheFoundationwebpageathttp://www.pglaf.org.

Section3.InformationabouttheProjectGutenbergLiteraryArchive

Foundation

TheProjectGutenbergLiteraryArchiveFoundationisanonprofit

501(c)(3)educationalcorporationorganizedunderthelawsofthe

stateofMississippiandgrantedtaxexemptstatusbytheInternal

RevenueService.TheFoundation'sEINorfederaltaxidentification

numberis64-6221541.Its501(c)(3)letterispostedat

http://pglaf.org/fundraising.ContributionstotheProjectGutenberg

LiteraryArchiveFoundationaretaxdeductibletothefullextent

permittedbyU.S.federallawsandyourstate'slaws.

TheFoundation'sprincipalofficeislocatedat4557MelanDr.S.

Fairbanks,AK,99712.,butitsvolunteersandemployeesarescattered

throughoutnumerouslocations.Itsbusinessofficeislocatedat

809North1500West,SaltLakeCity,UT84116,(801)596-1887,email

Page 68: Gas Oil Engines

[email protected]

informationcanbefoundattheFoundation'swebsiteandofficial

pageathttp://pglaf.org

Foradditionalcontactinformation:

Dr.GregoryB.Newby

ChiefExecutiveandDirector

[email protected]

Section4.InformationaboutDonationstotheProjectGutenberg

LiteraryArchiveFoundation

ProjectGutenberg-tmdependsuponandcannotsurvivewithoutwide

spreadpublicsupportanddonationstocarryoutitsmissionof

increasingthenumberofpublicdomainandlicensedworksthatcanbe

freelydistributedinmachinereadableformaccessiblebythewidest

arrayofequipmentincludingoutdatedequipment.Manysmalldonations

($1to$5,000)areparticularlyimportanttomaintainingtaxexempt

statuswiththeIRS.

TheFoundationiscommittedtocomplyingwiththelawsregulating

charitiesandcharitabledonationsinall50statesoftheUnited

States.Compliancerequirementsarenotuniformandittakesa

considerableeffort,muchpaperworkandmanyfeestomeetandkeepup

withtheserequirements.Wedonotsolicitdonationsinlocations

wherewehavenotreceivedwrittenconfirmationofcompliance.To

SENDDONATIONSordeterminethestatusofcomplianceforany

particularstatevisithttp://pglaf.org

Whilewecannotanddonotsolicitcontributionsfromstateswherewe

havenotmetthesolicitationrequirements,weknowofnoprohibition

againstacceptingunsoliciteddonationsfromdonorsinsuchstateswho

approachuswithofferstodonate.

Internationaldonationsaregratefullyaccepted,butwecannotmake

anystatementsconcerningtaxtreatmentofdonationsreceivedfrom

outsidetheUnitedStates.U.S.lawsaloneswampoursmallstaff.

PleasechecktheProjectGutenbergWebpagesforcurrentdonation

methodsandaddresses.Donationsareacceptedinanumberofother

waysincludingincludingchecks,onlinepaymentsandcreditcard

donations.Todonate,pleasevisit:http://pglaf.org/donate

Section5.GeneralInformationAboutProjectGutenberg-tmelectronic

works.

ProfessorMichaelS.HartistheoriginatoroftheProjectGutenberg-tm

conceptofalibraryofelectronicworksthatcouldbefreelyshared

withanyone.Forthirtyyears,heproducedanddistributedProject

Gutenberg-tmeBookswithonlyaloosenetworkofvolunteersupport.

ProjectGutenberg-tmeBooksareoftencreatedfromseveralprinted

editions,allofwhichareconfirmedasPublicDomainintheU.S.

unlessacopyrightnoticeisincluded.Thus,wedonotnecessarily

keepeBooksincompliancewithanyparticularpaperedition.

MostpeoplestartatourWebsitewhichhasthemainPGsearchfacility:

http://www.gutenberg.net

ThisWebsiteincludesinformationaboutProjectGutenberg-tm,

includinghowtomakedonationstotheProjectGutenbergLiterary

ArchiveFoundation,howtohelpproduceourneweBooks,andhowto

subscribetoouremailnewslettertohearaboutneweBooks.