Top Banner

of 18

Gas Compressor Station Economic Optimization

Apr 04, 2018

Download

Documents

Rameerz Pancho
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Gas Compressor Station Economic Optimization

    1/18

    ResearchArticle

    GasCompressorStationEconomicOptimization

    RainerKurz,1MattLubomirsky,

    1andKlausBrun

    2

    1SolarTurbinesIncorporated,9330SkyparkCt.,SanDiego,CA92123,USA2SouthwestResearchInstitute,6220CulebraRoad,SanAntonio,TX78238,USA

    Received23September2011;Accepted6December2011

    AcademicEditor:MauroVenturini

    Copyright2012RainerKurzetal.Thisisanopenaccessarticledistributedunderthe CreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.

    Abstract

    Whenconsideringgascompressorstations forpipeline projects, theeconomic successof theentire operationdepends to a significantextenton theoperation ofthe compressors involved.In thispaper,thebasic factors contributingto theeconomics are outlined,withparticularemphasisonthe interactionbetweenthepipelineandthecompressorstation.Typicalscenariosaredescribed,highlightingthefactthatpipelineoperationhastotakeintoaccountvariationsinload.

    1.Introduction

    The economic success ofa gascompression operation depends to a significant extenton the operation ofthe compressors involved.Important criteriainclude first cost, operating cost (especiallyfuelcost),lifecyclecost, and emissions.Decisionsaboutthe layoutofcompressorstations(Figure 1)suchasthenumberofunits,standbyrequirements,typeofdriver,andtypeofcompressorshaveanimpactoncost,fuelconsumption,operationalflexibility,emissions,aswellasavailabilityofthestation.

    Figure1:Typicalcompressorstationwith3gasturbinedrivencentrifugalcompressors.

    2.CapitalCost:FirstCostandInstallationCost

    Capitalcostforaprojectconsistsoffirstcostandinstallationcost.Firstcostincludesnotonlythecostforthedriverandcompressor,andtheirskidorfoundation,butalsothenecessarysystemsthatarerequiredforoperatingthem, includingfilters,coolers,instruments,and

    valves, and, ifreciprocatingcompressors areused,pulsationbottles.Capital spares, operational spares, andstart-upandcommissioningsparesalsohavetobeconsidered.

    Althoughnotintuitivelyobvious,thisisalsotheareathatisaffectedbydriverderatesduetositeambienttemperatureandsiteelevation:thepowerdemandofthecompressorhastobemetatsiteconditions,notatISOorNEMAconditions.

    Installationcostincludesalllaborandequipmentcosttoinstalltheequipmentonsite.Itisdeterminedbycomponentweights,aswellastheamountofoperationsnecessarytobringtheshippedcomponentstoworkingcondition.

    3.MaintenanceCost

    Maintenancecostincludesthepartsandlabortokeeptheequipmentrunningatoraboveacertainpowerlevel.Thisincludesroutinemaintenance(likechangeoflubeoilandsparkplugsingasengines)andoverhauls.Maintenanceeventscanbescheduleorconditionbased.A cost related tomaintenance effort is the cost due to the unavailability of the equipment (see below). Maintenance affectsavailabilityintwoways.Many,butnotall,maintenanceeventsrequiretheshutdownoftheequipment,thusreducingitsavailability.Scheduledmaintenancehasusuallylessofaneffectthanunscheduledevents.Forexample,ascheduledoverhaulofagasturbinemaykeep

    theequipmentoutofoperationforonlyafewdaysifanengineexchangeprogramisavailable.

    Ontheotherhand,insufficientorimpropermaintenancenegativelyaffectstheavailabilityduetomorerapidperformancedegradationandhigherchanceofunplannedshutdowns.

    4.Efficiency,OperatingRange,andFuelCost

    Theperformanceparametersofthecompressoranditsdriverthatareimportantfortheeconomicevaluationareefficiencyandoperatingrange. Efficiencyultimatelymeansthe cost offuelconsumed tobring acertainamount ofgasfroma suction pressure toa dischargepressure.Intechnicalterms,thiswouldbeapackagewithahighthermalefficiency(orlowheatrate)forthedriverandahighisentropicefficiencyofthecompressor,includingallparasiticlosses(suchasdevicesto dampenpulsations,butalsopressuredropduetofiltrationrequirements) combined with low mechanical losses. This factor determines the fuel cost of the unit, operating at given operatingconditions.

    Operatingrangedescribesthe rangeof possibleoperating conditionsin termsof flowand headat anacceptableefficiency,within thepowercapabilityofthedriver.Ofparticularimportancearethemeansofcontrollingthecompressor(e.g.,speedcontrolforcentrifugal

    machines,orcylinderdeactivation,clearancecontrol,andothersforareciprocatingmachine)andtherelationshipbetweenheadandflowofthesystemthecompressorfeedsinto.Operatingrangeoftendeterminesthecapabilitytotakeadvantageofopportunitiestosellmoregas.Itshouldbenotedthatthereisnoreallowflowlimitfor stations,duetotheconceptualcapabilityforstationrecycleortoshuttingdownunits.Unitshutdown,inturn,hastobeconsideredwithregardstostartingreliabilityoftheunitsinquestion,aswellastheimpact

    Page 1 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    2/18

    onmaintenance.Inthisstudy,operatingrangeandtheupsidepotentialarenotspecificallyconsidered,mostlybecausenodataregardingfrequencyandvalueoftheseupsidepotentialswasavailable.Upsidepotentialcanbe realized,iftheequipmentcapabilitycanbeusedtoproducemoregas,thustakingadvantageofadditionalmarketopportunities.

    Thecostofthefuelgasisnotautomaticallythesameasthemarketpriceofthetransportedgas.Itdepends,amongotherthings,onhowfuelusageandtransporttariffarerelated.Thecostoffuelisalsoimpactedbywhethertheoperatorownsthegasinthepipeline(whichmakesfuelcostaninternaloperatingcost)ortheoperatorshipssomeoneelsesgas.Insomeinstances,thefuelcostmightbeconsideredvirtually nil.Thus, the ratio between fuel cost andmaintenance cost canvarywidely. Inmost installations, however, the fuelcostmayaccountformorethantwo-thirdsoftheannualoperatingcost.

    Thevalueofoperationalflexibilityissomewhathardtoquantify,butmanypipelinesystemsoperateatconditionsthatwerenotforeseenduringtheprojectstage.Operationalflexibilitywillresultinlowerfuelcostunderfluctuatingoperatingconditionsandinaddedrevenueifitallowstoshipmoregasthanoriginallyenvisioned.

    5.Emissions

    Anynatural-gas-poweredcombustionenginewillproduceanumberofundesirablecombustionproducts.NO x istheresultofthereactionbetweenNitrogen(inthefuelorcombustionair)andoxygenandrequireshighlocaltemperaturestoform.LeanpremixgasturbinesandleanpremixenginesreducetheNO xproduction.Catalyticexhaustgastreatments,suchasSCRs,canremoveabigportionofNOx intheexhaustgas,butalsoaddammoniatotheexhaustgasstream.

    ProductsofincompletecombustionincludeVOCs,CO,methane,andformaldehyde.FuelboundsulfurwillformSO x inthecombustionprocess.

    Thecombustionproductsaboveare usually regulated.For theeconomic analysis, thecost ofbringingthe equipmentto meetlocal orfederallimitshastobeconsidered.

    CO2 istheproductofburninganytypeofhydrocarbons.CO2,andsomeothergases,suchasmethane,areconsideredgreenhousegases.

    Typically,allgreenhousegasesarelumpedtogetherintoaCO2 equivalent.Inthiscontext,itmustbenotedthatmethaneisconsidered

    about20timesaspotentagreenhousegasasCO 2.Thus,1 kgofmethanewouldbeconsideredasabout20 kgCO2 equivalent.Insome

    countries,CO2 productionistaxed,andthereisapossibilitythatothercountries,includingtheUSA,adoptregulationsthatwouldgive

    CO2 avoidanceaneconomicvalue.Inthiscase,theamountofCO 2 ormethanethatisreleasedtotheatmospherehastobeconsideredasa

    costintheeconomicevaluation.

    Itfurther needsto be considered that theengine exhaust isnotthe only source of emissions in a compressor stationrelated to thecompressionequipment.Therearealsosourcesofmethaneleaksinthecompressionequipmentthatmayhavetobeconsidered.Inthiscase,onehastodistinguishleakagethatiseasilycapturedandcanthusbefedtoaflareandleakagethatcannotbecapturedeasily.Further,itmayhavetobeevaluatedhowfrequentlythestationhastobeblowndown.Forexample,whetherthecompressionequipmentcanbemaintainedandstartedfromapressurizedholddeterminestheamountofunwantedstationmethaneemissions.

    Lastly,otherconsumablesmayhavetobeconsidered.Thefrequencyandcostoflubeoilchanges,aswellaslubeoilreplacementsdueto

    lube oilconsumption, generate costs on various levels: first, the replacement cost for lube oil, second, if thelube oil is used in thecombustionprocess,theresultingemissions,andthird,ifthelubeoilentersthepipeline,thecostduetothepipecontamination,includingpossiblytheincreasedmaintenancecostofdownstreamequipment.

    6.Availability

    Availabilityistheratiobetweenthehoursperyearwhentheequipmentissupposedtooperateandactuallycanoperateandthehoursperyearwheretheequipmentissupposedtooperate.Availabilitythereforetakesintoaccounttheentireequipmentdowntime,bothduetoplanned and unplanned maintenance events. Inother words,if the operator needs the equipmentfor 8760 hours per year, and theequipmentrequires3shutdowns,lasting2dayseachforscheduledmaintenance,andinadditionalsohadtobeshutdownfor3daysduetoaequipmentfailure,theavailabilityoftheequipmentwouldbe97.5%.OtherthanMTBF,whichdescribesthefrequencyofunplannedfailures,theavailabilityhasadirectimpactonthecapabilityofaninstallationtoearnmoney.Besidesthetypeofequipment,thequalityofthemaintenanceprogramandthemeasurestakentodealwithenvironmentalconditions(air,fuel,etc.)haveasignificanteffectontheavailability(andreliability)oftheequipment.

    Thecostassociatedwithavailabilityisthefactthatthestationmaynotbeabletoperformitsfulldutyforcertainamountoftime,thusnotearningmoney.Thelossofincomecanbeduetothereductionofthepipelinethroughput,theunavailabilityofassociatedproducts(oilonan oil platform, condensates in a gas plant), or due to penalties assessed because contractual commitments are notmet. The valueassociatedwith thelostproductionis notnecessarily themarketvalueof thelostproduction.Itmayalsobe thelossof income fromtransportationtariffs,thecostfrompenaltiesfornotbeingabletosatisfydeliverycontracts,orthecostforlostopportunity(i.e.,duetotherequirementtokeepsparepowertocompensateforpooravailability,insteadofbeingabletousethesparepowertoincreasecontractuallyagreeddeliveries).

    Stationavailabilitycanbeimprovedbyinstallingspareunits,butthisisanadditionalfirstcostfactor.

    7.CompressorOperation

    Therelationshipbetweenpressuresandflowsinanygivenapplicationthatemploysgascompressorsaswellassomeotherfactorsmayinfluence the arrangement of compressors in a station as well as the type of equipment used. The question about series or parallelarrangementsinastationhastobeconsideredbothinthelightofsteady-stateaerodynamicperformance,aswellasregardingtransientbehavior, spare strategy, and growth capabilities.Not only the full load behavior of thedriver, but also itspart-load characteristics

    influenceareaslikefuelconsumptionandemissions.SincegreenhousegasemissionsfromCO 2 foragivenfuelgasareonlyinfluencedbytheoverallefficiencyoftheoperation,thereisastrongtiebetweenefficiencyandemissions.

    Differentconceptssuchasthenumberofunitsinstalled,bothregardingtheirimpactontheindividualstationandtheoverallpipelineandthenecessityofstandbyunitsarediscussed.Thenumberofcompressorsinstalledineachcompressorstationofapipelinesystemhasa

    Page 2 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    3/18

    significant impacton theavailability, fuel consumption, and capacityofthe system.Dependingon theloadprofileof the station, theanswersmaylookdifferentfordifferentapplications.

    Theoperatingpointofacompressorisdeterminedbyabalancebetweenavailabledriverpower,thecompressorcharacteristic,andthesystembehavior.Thecompressorcharacteristicalsoincludesthemeansofcontrollingthecompressor,suchas

    Ifvariablespeedcontrolisavailable,forexample,becausethedriverisatwo-shaft-gasturbineoravariablespeedelectricmotor,thisisusually thepreferred control method. It is often augmented by the capabilityto recycle gas. A typical compressor mapfor a speed-controlledcompressorisshowninFigure(Figure 2).Itshowstheareaofpossiblecompressoroperatingpoints.Thelowestflowpossibleisdeterminedbythesurgeline.Ifthestationrequiresevenlowerflows,gashastoberecycled.Onanypointofthemap,compressorspeedandpowerconsumptionaredifferent.

    Figure2:Systemcharacteristicsandcompressormap.

    Whereonthemapthecompressorwillactuallyoperateisdeterminedbythebehaviorofthesystem,thatis,therelationshipbetweenhead

    (pressureratio)andflowenforcedbythesystem(Figure 2).LineBdepictsasystemwheresuctionanddischargepressurearemoreorlessfixedandthuschangeverylittlewithchangesinflow.Examplesarerefrigerationsystemsorsystemswherethesuctionpressureisfixedbyarequiredseparatorpressure,andthedischargepressureisfixedbytheneedto feedthatgasintoanexistingpipeline.LineAshowsthetypicalbehaviorofapipeline,whereanychangeinflowwillimpactthepressuredropduetofrictioninthepipeline.

    Line C is typical for storage applications, where the pressure in the storage cavity increases with the amount of gas stored. If thecompressorisoperatedatmaximumpower,theinitialflowwillbehighduetotheinitiallylowpressureratio.Themoregasisstoredinthecavity,thehigheritspressure,andthustherequireddischargepressurefromthecompressorbecomes.Beingpowerlimited,theoperatingpointthenmovestoalowerflow.

    Incaseofapipeline,theoperatingpointofthecompressorisalwaysdeterminedbythepoweravailablefromthedriver(Figure3).Inthecaseofagasturbinedriver,thepoweriscontrolledbythegasproducerspeedsettingandthepipelinecharacteristic.Wefindthispointonthecompressormapattheintersectionbetweenthepipelinecharacteristicandtheavailablepower.Increasingtheflowthroughapipelinewillrequiremorepowerandmorecompressorhead.

    Figure3:Operatingpointanddriverpower.

    Thechangeofoperatingconditionsovertimeisduetomanyreasons,suchasdropinfieldpressure,thepipelinegetsloopedorhastomeetanincreaseincapacity.Loopingthepipelinewillchangethecharacteristicofthepipelinetoallowmoreflowatthesameheadrequirement.So,any change in the pipeline operationwill impactpower requirements, compressor head orpressure ratio,and flow. Operationalchangesmaymove thecompressoroperatingpointover timeinto regimeswithlower efficiency.Fortunately, centrifugalcompressorsdrivenbygasturbinesareveryflexibletoautomaticallyadapttothesechangestoadegree.

    Asindicated,variablespeeddriversallowforefficientoperationoveralargerangeofconditions.Ifaconstantspeeddriverhastobeused,theadjustmentofthecompressortotherequiredoperationusuallyhastorelyontheuseofrecyclingandsuctionordischargethrottling.Eithermethod,whileeffective,isnotveryefficient:throttlingrequiresthecompressortoproducemoreheadthanrequiredbytheprocess,thusconsumingmorepower.Onacompressorspeedline,throttlingwillmovethecompressortoapointatlowerflowthanthedesignpoint.Recyclingforcesthecompressortoflowmoregasthanrequiredbytheprocessandthusalsoconsumesmorepower.Itthusallowsthecompressortooperateatalowerheadthanthedesignhead.Ingeneral,anelectricmotorforaconstantspeeddrivehastobesizedforalargerpowerthanamotorforavariablespeeddriveunderotherwisethesameconditions.Furthermore,startingofconstantspeedmotorsrequirestooversizetheelectricutilities,especiallyifastartofapressurizedcompressorisdesired.

    8.OperationalFlexibilityandStandbyRequirements

    Operational flexibility undera larger numberof differentoperating scenarios hasto be studied. Demand varieson anhourly,daily,monthly,orseasonalbasis.Also,theavailablegasturbinepowerdependsontheprevalentambientconditions(LottonandLubomirsky[1]).Similarly,transientstudiesonpipelinesystems(Santos[2])canrevealtheoftenlargerangeofoperatingconditionsthatneedstobecovered bya compressorstationand thoroughanalysis can often revealwhichtypeof concept yieldslowerfuelconsumption.Lastly,scenariosthatarisefromfailuresofoneormoresystemshavetobeconsidered(OhanianandKurz[ 3]).Inanyapplication,operatinglimitsduetospeedlimitsareusuallyundesirable,becausetheymeanthattheavailableenginepowercannotbeused.But,becauseagasturbinecanproducefarmorepoweratcolderambienttemperatures,designsbasedonworstcaseambientconditionsmaynotbeoptimal.Optimizationconsiderationscanalsobefoundin[4,5].

    Thequestforoperationalflexibilitycanbesatisfiedonvariouslevels:thecompressorandthedrivershouldhaveawideoperatingrange.Usingmultiplesmallerunitsperstationratherthanonelargeunitcanbeanotherway.Here,thearrangementinseriesorinparallelwillimpacttheflexibility.Thegasturbinesallowforimmediatestartingcapabilityiftheneedarises.

    (i)(ii)(iii)(iv)

    variablespeedcontrol,adjustableinletguidevanes,suctionordischargethrottling,recycling.

    Page 3 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    4/18

    Inupstream and midstream applications, configurations usually need to cover a large range of operating points. Depending on theapplication,theoperatingpointscanvaryonanhourly,daily,weekly,monthly,orseasonalbasis.Contributingfactorsaresupply(e.g.,depletedfields ornewwells) and demand, changes ingas composition orsite availableengine power.Often, flow demandand headrequirementsarecoupled.Thisisveryobviousforpipelineapplications,wherethepressuredropbetweenstations(andthusthepressureratioofeachofthestations)isdirectlyrelatedtotheflow(Figure 4).

    Figure4:Typicalsteadystatepipelineoperatingpointsplottedintoacompressorperformancemap.

    Inotherapplications,thecompressoroperatingpointsarelimitedbythemaximumavailableenginepower.Thisis,forexample,thecaseforstorageandwithdrawaloperations.Here,thegoalistofillthestoragecavityasfastaspossible,whichmeansthatengineoperatesatitsmaximumpower.Sincethefillingofthestoragecavitystartsatverylowpressuredifferentials,theflowisinitiallyveryhigh.Asthecavitypressureandwithitthecompressorpressureratioincrease,theflowisreduced.Forapplicationslikethis,compressorarrangementsthatallowtooperatetwocompressorsinparallelduringtheinitialstage,withthecapability(eitherwithexternalorinternalvalves)toswitchtoaseriesoperation,areveryadvantageous.Incidentally,back-to-backmachinescannotbeusedinthiscaseduetotheirdelicateaxialthrustbalance.

    Dynamic studiesofpipelinebehavior reveal adistinctlydifferentreactionof apipeline changes instation operatingconditionsthan asteady-statecalculation(Figure5).Insteadystate(orforslowchanges),pipelinehydraulicsdictateanincreaseinstationpressureratiowithincreasedflow,duetothefactthatthepipelinepressurelossesincreasewithincreasedflowthroughthepipeline(Figure 4).However,ifacentrifugalcompressorreceivesmoredriverpowerandincreasesitsspeedandthroughputrapidly,thestationpressureratiowillreactveryslowly tothischange.This isduetofact thatinitially theadditional flowhastopack thepipeline (withitsconsiderablevolume)untilchangesinpressurebecomeapparent.Thus,thedynamicchangeinoperatingconditionswouldlead(inthelimitcaseofaveryfastchangeincompressorspeed)toachangeinflowwithoutachangeinhead(Figure 5).

    Figure5:Typicaloperatingpointsiftransientconditionsareconsidered,inthiscaseduetotheshutdownofoneunitinatwo-unitstation.

    Becausethefailureorunavailabilityofcompressionunitscancausesignificantlossinrevenue,theinstallationofstandbyunitsmustbeconsidered.Thesestandbyunitscanbearrangedsuchthateachcompressionstationhasonestandbyunit,thatonlysomestationshaveastandbyunit,orthatthestandbyfunctioniscoveredbyoversizingthedriversforallstations.(Oversizingnaturallycreatesanefficiencydisadvantageduringnormaloperation,whentheunitswouldoperateinpartload.)Itmustbenotedthatthefailureofacompressionunitdoesnotmeanthattheentirepipelineceasestooperate,butratherthattheflowcapacityofthepipelineisreduced.Sincepipelineshavea

    significant inherent storage capability(line pack), a failure of one ormore units does nothave an immediateimpact on the totalthroughput.Additionally,plannedshutdownsduetomaintenancecanbeplannedduringtimeswhenlowercapacitiesarerequired.

    Standbyunitsarenotalwaysmandatorybecausemoderngas-turbine-drivencompressorsetscanachieveanavailabilityof97%andhigher.Astationwithtwooperatingunitsandonestandbyunitthushasastationavailabilityof100 (becausetwounitshavetofailatthesametimeinordertoreducethestationthroughputto50%).Astationwithonestandbyunitandoneoperatingunitalsoyieldsa99.91%stationavailability.However,whilefailureoftwounitsinthefirstcasestillleavesthestationwith50%capacity,theentirestationislostifbothunitsfailinthesecondcase.Arguably,installingtwosmaller50%unitsratherthanonelarger100%unitcouldavoidtheneedforinstallingastandbyunit.

    Ithasoftenbeenassumedthatfortwo-unitstationswithoutastandbyunit,aparallelinstallationofthetwounitswouldyieldthebestbehaviorifoneunitfails.However,OhanianandKurz[3]haveshownthataseriesarrangementofidenticalcompressorsetscanyieldalowerdeficiencyinflowthanaparallelinstallation.Thisisduetothefactthatpipelinehydraulicsdictatearelationshipbetweentheflowthrough thepipeline and the necessarypressure ratio at the compressor station. For parallel units,the failure ofone unit forces theremainingunittooperateatornearchoke,withaverylowefficiency.Identicalunitsinseries,uponthefailureofoneunit,wouldinitiallyrequirethesurgevalvetoopen,buttheremainingunitwouldsoonbeabletooperateatagoodefficiency,thusmaintainingahigherflow

    thanintheparallelscenario.Giventhefactthatthegasstoredinthepipelinewillhelptomaintaintheflowtotheusers,aseriesinstallationwouldoftenallowforsufficienttimetoresolvetheproblem.

    Operatingmultipleunits(eitherinparallelorinseries)canbeoptimizedonthestationorunitlevelbyloadsharingcontrols.Iftheunitsare fairly similar inefficiencyandsize,controlschemes that shareloadsuchthatbothunitsoperateat thesamesurgemarginof thecompressorscanbeadvantageousandwillusuallyresultinagoodoverallefficiency.Similar(oridentical)unitsingeneralachievethelowestoverallfuelconsumptionifbothareaboutevenlyloaded.Thefuelsavingsfromrunningoneunitathighload(andthushighergasturbineefficiency)ismorethancompensatedbyrunningtheotherunitatlowloadandlowerefficiency.Inotherwords,runningtwounitsat75%loadresultsinloweroverallfuelconsumptionthanrunningoneunitat100%andoneunitat50%load.

    Ontheotherhand,iftheunitsaredissimilarinsize,orofverydifferentefficiency,itmaybebestifthe larger,orthemoreefficient,unitcarriesthebaseload,whilethesmaller,orthelessefficient,unitisresponsibletoprovidepowerforloadswings.

    Pipelineswithloadswings(Figure6)canoftenbenefitfromusingmultiplesmallerunitsasopposedtosinglebigunits.

    Figure6:AveragedloadvariationforfourstationsofaninterstatepipelineinSouthAmericaduringsummerand

    winterscenarios.

    Page 4 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    5/18

    Whileanalyzingtheperformanceoftheentirepackageitisimportanttounderstandhowtodistinguishtheunitwiththebestoverallefficiency. The turbocompressor performance depends on efficiency of two main componentsgas turbine and the centrifugalcompressor.Thebestefficiencycompressordoesnotalwaysprovidetheoveralllowestunitfuelconsumptionsastheveryimportantpieceoftheequationistheturbineefficiency.Also,therelationshipbetweenthecompressorrunningspeedandthepowerturbineoptimumspeedattherequiredgivencompressorloadmustbeconsidered.Themaingoalduringthecompressorselectionsprocessistofindthestageselectionsthatnotonlyprovidesthehighestcompressorefficiencybutalsowouldyieldthehighestoverallpackageefficiency,whichisachieved,whenthefuelconsumptionforthedutyisminimized.AsweknowfromdiagraminFigure 7 thelowertheturbinepartloadis-thelowertheturbineefficiencywillbe.Assuch,thehigherloadedturbineshouldgenerallyprovidethebetterturbineandoverallpackageefficiency.

    Figure7:TypicalChangeofEfficiencywithpartloadfor3differentindustrialgasturbines.

    Therelationshipbetweencompressorefficiencyandfuelconsumptioncanmathematicallybederivedasfollows.

    For a given operation requirement, defined by standard flow, suction pressure,suction temperature,gas composition, and dischargetemperature,thisoperationrequirementpreciselydefinestheisentropichead andthemassflow .

    Thepowerconsumptionofthecompressor thenonlydependsonitsisentropicefficiency andthemechanicallosses ,as

    follows:

    In otherwords, for a given duty, the compressorwith thebetter efficiency will always yield a lower power consumption, since themechanicallossestendtobeverysimilarfordifferentcompressors.

    isthepowerthatmustbeproducedbythegasturbine.Inturn,thegasturbineefficiencyisafunctionoftherelativeload,thatis,

    whatpercentageofgasturbinefullpower availableatthegivenambientconditionsandtherequiredcompressorspeedisrequired

    bythecentrifugalcompressor(KurzandOhanian[6]):

    Therelationshipbetweengasturbinepower,fuelflowFF,heatrateHR,andgasturbineefficiency isasfollows:

    Forthecompressorapplicationsthismeansthat,forabettercompressor,thereducedpowerconsumptionindeedcausesasmallincreaseingasturbineheatrateorreductioningasturbineefficiency.However,theresultoflowerloadandhigherheatrateisalwaysalowerfuelconsumption.

    Otherimportantissuesmustbeconsideredwhenanalyzingoverallpackageefficiency.Inmanyinstancesithasbeenrequestedbytheenduserto use thegasturbineheat rate asan indication oftheoverall packageperformanceefficiencies and asthebasis for thepackageguarantees.Higherturbineloadwillcorrelatewithahigherturbineefficiency.Thisrelationshipiscorrecthowever;theturbocompressorusershouldrecognizesomeunderlyingcircumstancesthatcanleadtothewrongconclusion.

    Thepeculiarthingisthatoperatingatlowercompressorefficiencythecentrifugalcompressorwillrequiremorecompressionpowertodotheirdutythatwillultimatelyincreasetheturbineload.Ifweaccountthathigherpartloadwillleadtothebetterengineefficiencywediscoverthatcompressorwithlowerefficiencywillforceturbineoperateatbetterheatrate!ThisisthefactthatisbeingoverlookedinmanyinstancesifthecomparisonbetweenthevendorsisdonesolelybasedondriversHeatRate.Thequestionishowtoavoidthistrap.Thesimpleandthestraightforwardansweristhatoverallunitcomparisonshouldbedonenotonturbinesheatrate,whichissimplyjustanumber,butratherondirectvalue-turbinefuelconsumption.Inthiscasethelowercompressorefficiencywilldrivehigherturbinepower,and,despitethefactthattheturbinesheatrateandefficiencywillbeimproving,theactualturbinesfuelconsumptionwillbegoingup.

    Intheend,theonlymeasurethatistakenintoaccountwhencalculatingpackageoveralloperatingcost(OPEX)isthefuelconsumptionwhereastheturbinesheatrateortheturbinessimplecycleefficiencyremainsonlynumbersonthepaper(Figure 8).

    Figure8:ImpactofcompressorefficiencyonGTLoad,heatrate(HR),andfuelconsumption(FF).

    9.PipelineSizingConsiderations

    Kurzetal.[7]evaluateddifferentoptionsforpipediameters,pressureratings,andstationspacingforalongdistancepipeline.A3220km(2000mile)onshoreburiedgastransmissionpipelinefortransportingnaturalgaswithagravityof0.6wasassumed(Figure 9).

    Page 5 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    6/18

    Figure9:Optimumnumberofstationsandoptimummaximumoperatingpressure(MAOP)forthe3220 km(2000

    mile),560000 Nm3/hsamplepipeline.ThelowestcostconfigurationsforeachMAOPsolutionaremarked(from[ 7]).

    Assumingthatpipeswillbe availablein 2-diameter incrementsfrom pipemills, thenearest evenincrementsof theabove-mentionedtheoreticaldiameterswereselected(24 ,28,and34 for152bar,103bar,and69bar(2200,1500,1000psia)pressures,resp.)andanalyzed

    byvaryingthenumberofstationsalongthepipeline.TheresultofthisrefinementisshowninFigure 9,wherepresentvalueisplottedagainstnumberofstationsforeachpressurelevel.Theminimaforeachisshowninthechartwithpresentvaluetotalhorsepower,andnumber of stations. Inthis study,the 69bar (1000psia)pipeline hasthe lowestpresent value thuswouldbe themost cost-effectivesolution.

    Inactualpractice,forcommonalityreasons,identicalsizeunitswillbeinstalledinthestations.Inordertohaveidenticalpowerateachstation,thestationspacingwillbeadjusted(dependentonthegeography)sincethestationsatthebeginningofthelinewillconsumemorepowerthanthestationsattheendofthelineduetothepowerrequiredforfuelcompression.Identicalpowerateachlocationalsodependsonsiteelevationanddesignambienttemperature,whichwoulddefinethesiteavailablepowerfromacertainengine.

    Oneofthekeyfindingsisthattheoptimumisrelativelyflatinallcases.Thismeansinparticularthatcertainconsiderationsmayfavorlarger stationspacing,withhigher stationpressureratios and higher MAOP insituationswherepipelinesare routed through largelyunpopulatedareas.

    10.TypicalApplication

    Foracasestudyweconsideraninternationallongdistancepipeline.Thetotallengthofthelineisabout7000 km.Thepipelineconsistsoftwo42 parallellineswhichturnintosinglea48 lineatthecrossingofaninternationalborder.Thepipelinedesignthroughputis30billion

    Nm3peryearandmaximumoperatingpressureofthispipelineis9.8 MPa.Thereare10compressorstationsplannedinoneareaandover

    20stationsinthereceivingcountry.Afterfirstgas,ittakes5yearstobuilduptofullcapacity.

    Whenwecompareoperationsofthecompressorstationweneedtorecognizetwomainapproaches.Wecaneitheroperatewithfeweroflargerturbocompressorunits(CaseA,2largeunits)orwithahigherquantityofsmallerturbocompressorunits(CaseB,4smallunits).Thefollowingfactorsneedtobeconsideredwhenselectionofeitheroptionisdecided.Inevaluatingthesystemreliabilityandmaximumthroughputtheimpactofunitoutagesneedstobeconsidered.Ifweweretoconsidertwolarge30 MWunitsthefailureofoneofthemwillresultin50%reductionofpoweravailablewhereasifweconsider4smaller15MWunitsthefailureofoneofthemwillresultinonly25%powerreduction.Figure10 outlinesthebasicfact that,if thesurvivingunits runatfull loadtomakeup asmuchflowaspossible,theoperatingpointfortheCaseBwillbeclosetothehighestefficiencyislandsotheremainingon-linecompressorswillbeworkingmoreeffectively comparedto CaseAwhenthe single remaining largeunitwillbeworkingin the stonewallarea. Itis obviousthatpipelinerecoverytimewillbeshorterinCaseB.

    Figure10:Impactoflossofoneunitforthe4unitandthe2unitscenarios.

    BasedonananalysisbySantosetal.[ 8,9],CaseAcanrepresentevenmoreproblems.Theamountofgasthatthesingleremaining30 MWunitwillhavetoprocessissobigthatitwillputthisremainingunitintochoke,andthusforpracticalpurposesoutofoperation.Theamountoffuelthattheremainingunitis goingtoburnwillnotjustify thatnegligible increasein headthatthisunitwillprovide.So,practically,whenone larger turbocompressor will beoutof operation,the secondwill have to be shut down and thestationwill bebypassed.Stationconfigurationswiththesingleoversizedriverandeithernostandbyorstandbyoneachsecondorthirdstationareoftenadvocated.Theargumentsinfavorofthismethodareveryhighpipelineavailability(99.5%)andhighefficiency(4042%)ofthelarger30MWturbocompressorunits.Infact,designingforaturbineoversizedby15%willleadtonormaloperationsatpartloadconditionsalmostallthetime(99.5%)wheretherewillbenegativeimpactonturbineefficiencyand,asaresultofit,increasedfuelconsumptionAnother

    negative impact of this approach is that normally this pipeline would operate at lower than MAOP pressure, whereas the highestoperationalpipelinepressureproduceslesspressurelossesand,therefore,lowerrequirementsfortherecompressionpower.Thereasonforthat isthemaintenancescheduleforthe turbocompressorson the stationswith the single unitswithout standby. Inorder toperformmaintenanceon theseunitsthe pipeline,linepackwillhaveto bemaximized uptoMAOP,so thatunitcanbetakenofflineandthepipelinethroughputwillnot beimpacted. Therefore, thenormalpipelineoperationshave tobe basedon alowerMAOP.Alsoworthmentioning is thepipeline capacitywhenconsidering the single turbocompressorapproach.Manypipelines transport gasownedandproducedbydifferentcommercialentities.Assuchthegasfieldsdevelopmenttimeandgasavailabilitydependonmanytechnologicaland,lately, political factors thatmay potentiallyhavenegative impacton pipeline predictedcapacity growth. In theseconditionsthe singleoversizedturbocompressorwilleitherbeworkingintodeeprecyclingmodeuntiltheexpectedamountofgaswillbecomeavailableorstartoperationwithsmallercapacitycompressorstageswhichwillsubsequentlyrequireacostlychangeoftheinternalbundle.

    11.FuelComparison

    Itisincreasinglyimportanttoevaluateallseasonsconditionswhenmakingacomparisonbetweentwodifferentstationlayoutcases.Forthesubjectpipelinedifferentdesignorganizationswereinvolvedinthepipelinefeasibilitystudy.Oneofthemhasusedsummerconditions

    onlyandcametotheconclusionthatlargerturbinesarepreferredoption.Anothersourceusedannualaverageconditionsandcametotheoppositeconclusion.Thereasonforthatwasthefactthatduringwinter,fall,andspringmonths,whichcovertotalof9outof12monthsofoperation,oneofthesmallerturbocompressorswasputinthestandbymode.Duetolowerambienttemperaturetheamountofpoweravailablefromtheremaining3unitswasenoughtocoverthe100%dutiesduetohighcompressorefficiency.ThiswasnottrueforCase1(basedonsameexplanationabove)andboth30 MWunitshadtoworkinthedeeppartloadwithunsatisfactoryturbineefficiency.Thefact

    Page 6 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    7/18

    thatoperationalmodebecame3+2 forCaseBgaveadditionalbenefitsworthmentioning.Sincetwoturbocompressorswereinstandbymodetherewasanopportunitytodoallmaintenanceworkduringthistimeoftheyear.ItmeansthatavailabilityofthissystembecomessuperiorcomparedtoCaseA,especiallyifweweretoconsidersummermonthsofoperations.

    12.MaintenanceandOverhauls

    Anotheradvantage ofoperating only3outof5 unitsfora significantpartof the year (i.e.,9 outof12months)isthe extendedtimebetweenoverhauls.Basedonthecalculationsbelow,thetotalnumberofhoursforeachturbocompressorunitperyearwasreducedfrom7008to5694,and,therefore,thetimebetweenoverhaulscouldbeextended.Basedon unitsoperatingduring3summermonthsand3

    +2unitsoperatingduringtherestoftheyear(9months),iftheunitswereusedsothattheyallranexactlythesamenumberofhourseachyear,eachunitwouldrunfor5,694hourseveryyear.Whereasifweaccountfor4workingunitswithonestandbythroughouttheyearthenumberofworkinghourswillbeasfollows:8,7604unitsrunning=35,040/5unitsavailable=7,008totalhoursperunit/year.

    Notethatallunitsrunforanequalnumberofhourstomakethecalculationsimple.However,thecustomercouldpushleadmachinestoreachtheagreedtimebetweenmajorinspections(TBI)first,sothatallenginesdonotcomeupforoverhaulatthesametime,andthiswouldhelpwiththeoverhaulcost,helpingtodistributetheoverhaulcostoverthe30yearcycle.Wecanevenmakestepfurtherandwillseeadditionalbenefitsofthisapproach.Accountingforthenormalyeararoundoperationwith4unitsonline,eachturbocompressorwillget7,00830year=210,240requiredhoursofoperations,whereasconsidering3+2setupfor9monthsthetotalnumberoftherequiredhoursofoperationsreduceddownto170,820hours.Withmodernturbinestechnologyitisnotuncommontoseethatlifetimeoperationreaches150180,000hours.Itmeansthatforthelifetimeofthisproject(30years)therewillbenoneedtobuynewsetofequipment.Thisalonemakeshugefavorableimpactonprojectseconomics.

    13.StationversusSystemAvailability

    Itisimportanttorecognizethedifferencebetweenstationandpipelineavailability.Foreconomicassessments,misunderstandingthisissuecanleadtothewrongconclusion.Stationavailabilitycalculationsareeasy,straightforwardandbasedonsimplestatisticalequations.Itiseasytoseethatfewerunitsonacompressorstationwillyieldhigheravailability,assumingthethresholdforavailabilityis100%oftheflow.But is this true for the entire pipeline system? The answer is not easy and requires additional investigation including extensivehydrodynamic analysis usingof thestatisticalmethodology.TheMonteCarlomethod[9]hasprovedtobethegoodmethodologytodeterminethepipelinesystemavailability.Thestatisticalportionconsistsofgeneratingmultiplerandomcasesofequipmentfailureonsingleortwoconsecutivecompressorstations.Thehydrodynamicportionwillcalculatethemaximumthroughputthatpipelineisavailabletocarrywhenthesefailuresoccur.Basedonthisextensiveandin-depthanalysisitcanbeshownthatavailabilityofapipeline,configuredwithsmallermultipleunits,deliversbetteroverallresults.Themainreasonforthatoutcomeisthefactthatshutdownofthesmallerunitmakeslesserimpactonthebehavioroftheentirepipeline.Ofcourse,tohavefairresults,theavailabilityofthesingleturbocompressorunit,eithersmaller15 MWorlargersize30 MW,wasidentical.It iseasyto understandthatinourparticularcasetheavailabilityof thestationsetupwithsmallerunits(CaseB)wasgreatlyenhancedbecauseofthepresenceofextrastandbyunitduringwinterandfall/springmonthswhenstationssetuphas3+2configuration.

    14.EffectofLargeUnitShutdown

    Examplesofthevulnerabilityaredemonstratedbasedona typicalpipelinescenariowith4stations.Eachstationhas2compressortrainswithout spares. If one unit in station2 is lost, thepipeline flow is reduced by 12%. However, thesame 12% flow reduction can bemaintainedbyalsoshuttingdownthesurvivingunitinstation2.Thisisduetothenecessarilyinefficientoperationofthesurvivingunitinstation2,whichisforcedtooperateinchoke.Ifbothunitsareshutdown,stations3and4willbeabletorecovertheflow,butatamuchhigheroverallefficiency.Thus,shuttingbothunitsdownreducesthepipelinefuelconsumptioncomparedtothescenariowithonlyoneunitshutdowninstation2.Thepointofthisexampleis,thefailureofoneoftwolargeunitsinacompressorstationhasmoresignificantconsequencesthanthefailureofasmallerunitinastationwiththreeormoreoperatingunits.Or,inotherwords,scenarioswith3oremoreunitsperstationwithoutspareunitstendtohaveahigherflowifoneoftheunitsfailsorhastobeshutdownformaintenance,thanscenarioswith2unitsperstationwithoutspareunits.

    15.Conclusion

    Thepaperhasillustratedthedifferentinfluencefactorsfortheeconomicsuccessofagascompressionoperation.Importantcriteriaincludefirstcost,operatingcost(especiallyfuelcost),capacity,availability,lifecyclecost,andemissions.Decisionsaboutthelayoutofcompressorstations such as the number of units, standby requirements, type of driver and type of compressors have an impact on cost, fuel

    consumption,operationalflexibility,emissions,aswellasavailabilityofthestation.

    References

    1. J.H.LottonandM.Lubomirsky,GasTurbineDriverSizingandRelatedConsiderations,BratislavaPublishers,Slovakia,2004.

    2. S.P.Santos,Transientanalysis- amustingaspipelinedesign,inProceedingsofthePipelineSimulationInterestGroupConference ,Tucson,Ariz,USA,1997.

    3. S.OhanianandR.Kurz,Seriesofparallelarrangementinatwo-unitcompressorstation,JournalofEngineeringforGasTurbinesandPower,vol.124,no.4,pp.936941,2002. ViewatPublisher ViewatGoogleScholar ViewatScopus

    4. W.Wright, M. Somani,andC.Ditzel, Compressor station optimization, inProceedingsof the30th Annual Meeting,PipelineSimulationInterestGroup,Denver,Colo,USA,1998.

    5. M. Pinelli, A.Mazzi, and G.Russo, Arrangement and optimization or turbocompressors in off-shore natural gas extractions

    station,Tech.Rep.GT20005-68031,ASME,2005.6. R.KurzandS.Ohanian,Modellingturbomachineryinpipelinesimulations,inProceedingsofthe35thAnnualMeeting,Pipeline

    SimulationInterestGroup,Berne,Switzerland,2003.

    7. R.Kurz,S.Ohanian,andK.Brun,Compressorsinhighpressurepipelineapplications,Tech.Rep.GT2010-22018,ASME,2010.

    Page 7 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    8/18

    8. S.P.DosSantos,M.A.S.Bittencourt,andL.D.Vasconcellos,Compressorstationavailabilitymanagingitseffectsongaspipelineoperation,inProceedingsoftheBiennialInternationalPipelineConference(IPC'07),vol.1,pp.855863,2007.

    9. S.P.Santos,MonteCarlosimulationakeyforafeasiblepipelinedesign,in ProceedingsofthePipelineSimulationInterestGroupConference,Galveston,Tex,USA,2009

    Page 8 of 8Gas Compressor Station Economic Optimization

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    9/18

    Figure1:Typicalcompressorstationwith3gasturbinedrivencentrifugalcompressors.

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 1

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig1/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    10/18

    Figure2:Systemcharacteristicsandcompressormap.

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 2

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig2/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    11/18

    Figure3:Operatingpointanddriverpower.

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 3

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig3/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    12/18

    Figure4:Typicalsteadystatepipelineoperatingpointsplottedintoacompressorperformancemap.

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 4

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig4/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    13/18

  • 7/30/2019 Gas Compressor Station Economic Optimization

    14/18

    Figure6:AveragedloadvariationforfourstationsofaninterstatepipelineinSouthAmericaduringsummerandwinterscenarios.

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 6

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig6/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    15/18

    Figure7:TypicalChangeofEfficiencywithpartloadfor3differentindustrialgasturbines.

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 7

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig7/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    16/18

    Figure8:ImpactofcompressorefficiencyonGTLoad,heatrate(HR),andfuelconsumption(FF).

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 8

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig8/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    17/18

    Figure9:Optimumnumberofstationsandoptimummaximumoperatingpressure(MAOP)forthe3220 km

    (2000mile), 560000Nm3/h sample pipeline. The lowest cost configurations for each MAOP solution are

    marked(from[7]).

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 9

    05/01/2013http://www.hindawi.com/journals/ijrm/2012/715017/fig9/

  • 7/30/2019 Gas Compressor Station Economic Optimization

    18/18

    Figure10:Impactoflossofoneunitforthe4unitandthe2unitscenarios.

    Page 1 of 1Gas Compressor Station Economic Optimization : Figure 10