Top Banner
22

Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Jun 04, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design
Page 2: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

OverviewOverview

• Intro, Comparison and Limitations of  Study Tools

• Emerging Applications for EMT Analysis• Emerging Applications for EMT Analysis

• Examples

• New R&D Topics• Parallel Processing of EMT Simulations• Hybrid Simulations (EMT and Transient Stability)

• Questions...

Slide 2

Page 3: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Classical Planning ToolsClassical Planning Tools

• Classical Tools for Interconnection and Expansion Planning:• Powerflow, Transient Stability

• Short Circuit Analysis (SCMVA “rules of thumb”)

• Small signal, PV/QV Stability Analysis

Slide 3

Page 4: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Classical EMT UsesClassical EMT Uses

Electro‐Magnetic Transients Tools

• HVDC/FACTS Equipment Design

l l d• Transient Overvoltage Analysis, Energization Studies…

• Harmonics and Power Quality

• Lightning/Steep Front• Lightning/Steep Front

• Transient Recovery Voltage Analysis

• Academic/Research/

• Analysis of “Special Cases”

….Separate from Planning Process….Separate from Planning Process

Slide 4

Page 5: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Classical LimitationsClassical Limitations

• Transient Stability ToolsTransient Stability Tools• High level control approximations, large time steps, phasor representations, simple element representations, poor/non‐convergent weak system behaviorconvergent  weak system behavior

• Short Circuit Analysis • Power Electronics don’t have Xd”!!  How do you calculate SCR/ESCR?SCR/ESCR?

• Inertial effects not considered in SCR/ESCR “rules of thumb”

• EMT Analysis y• Slow run‐times, small systems, setting initial conditions, system equivalents, machine models, re‐entering data for new cases time‐consuming…g

Slide 5

Page 6: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

The Power System “20 years ago”The Power System  20 years ago

• Generation: synchronous generators

• Transmission: AC transmission lines/cables, shunt capacitors/reactors, transformers

• Classical Distribution/Loads/

• Relatively strong systems

• A few complex high speed devices (HVDC• A few complex high speed devices (HVDC etc...) which rely on high SCR and inertia.

Slide 6

Page 7: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Trends in Power SystemsTrends in Power Systems

• Numerous complex power electronic devices: Wind farms, HVDC/VSC, VFD, PV Inverters...

• Weak systems, low ESCR

• Increased loads, need for RAS schemes

• Series capacitors, SVCs and Statcoms (instead of new transmission lines)

• “Doing more with what you got”

• New research required for EMT tools!

Slide 7

Page 8: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Examples of Current StudiesExamples of Current Studies

• 3000 MW HVDC Link with 3000 MW of wind turbines:

di i l SC i l (f b h HV C d i d• Traditional ESCR is very low (for both HVDC and wind turbines)

• How do real wind turbine controls interact withHow do real wind turbine controls interact with HVDC controls?

• Are synchronous condensers needed?  ESCR vs I ti ?Inertia?

• What about Statcoms (with and without DC side batteries)?batteries)?

Slide 8

Page 9: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Examples of Current StudiesExamples of Current Studies

• Wind turbines tapping a HV series compensated line• All type 3 (DFIG) turbines will go unstable if they are 

radial (or near) series capacitors!

/• Does not show up in transient stability/phasor studies – must use EMT analysis

• Test damping controls new control changes series• Test damping controls, new control changes, series capacitor bypass filters, designing MOVs

• Highly relevant (Texas, PacifiCorp, Alberta, UK...)Highly relevant (Texas, PacifiCorp, Alberta, UK...)

Slide 9

Page 10: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Examples of Current StudiesExamples of Current Studies

• Offshore wind, using VSC multi‐terminal grid• Models not available in TS programs

• Use “real controls” from VSC and wind turbine manufacturers

• Develop EMT models of onshore VSC converters, DC cables, offshore converters and turbines.

Use passive or dynamic equivalents of the on shore• Use passive or dynamic equivalents of the on‐shore AC system (N busses back)

• Perform dynamic studies.Perform dynamic studies.

Slide 10

Page 11: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Model Development MethodologyModel Development Methodology

1. Start with utility supplied loadflows2. Translate N busses away, plot harmonic impedances3 I N til h i i d d t3. Increase N until harmonic impedances do not 

change appreciably (to get electrical resonances for a good electro‐magnetic system response)

4. Add busses of nearby generators and complex loads5. Tools auto‐create multi‐port network equivalents 

(b d l dfl Y t i ) d t t th(based on loadflow Y matrices) and auto‐route the EMT case.

6. End of “free lunch”

Slide 11

Page 12: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Model Development MethodologyModel Development Methodology

7. Enter detailed model data into a database/library:• HVDC/VSC links, SVCs, frequency dependant lines, transformer 

saturation, line shunt and neutral reactors...• Each detailed model is given the “from bus” “to bus” and circuit• Each detailed model is given the  from bus ,  to bus  and circuit 

number, uniquely correlating it to the same object in the utility loadflow case.

• Initialization components are used to auto‐transfer the terminal di i (V l P d Q) d di iconditions (V, angle, P and Q), power order, power direction, 

HVDC converter tap, transformer tap etc... to initialize the detailed model.

• Cases can be quickly generated for any loadflow – the EMTq y g yloadflow matches the original to 3 or 4 decimal points.

• Machines, exciters, governors, stabilizers ... are auto‐translated from the transient stability data files and are initialized for a clean start.clean start.

Slide 12

Page 13: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Slide 13

Page 14: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

EMT Tools – New DevelopmentsEMT Tools  New Developments

Parallel Processing

• EMT analysis is ideal for parallel processing (subsystems, traveling wave lines – methods used in real time digital simulators)

l l h• Multiple cores on the same computer

• Multiple cpu’s across a LAN

• Splitting up a large EMT simulation at a transmission line or at the entrance to a wind farm

Slide 14

Page 15: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

ELoad ControlI 1Get L_HLD

AEOLUS N67795 E_67795_69117_1_Test2

TAEOTWE&1

N69117 EI

TWE-WY N69111

230.0500.0

E

:1

TWE-WY N69112

<-- 5 -->T-Line

E_69112_66240_1_Test2E

PLATTE N66240 E_65975_66240_1_Test2

TMINERS

N65975 E_65975_67946_1_Test2T

FREEZOUTN67946

<-- 3 -->T-Line

E_67946_67796_1_Test2E E_67796_67814_1_Test2

TWINDSTAR

N67814 E_65060_67814_1_Test2T

ANT MINEN65060 E_65060_66745_1_Test2

TYELLOWCK

N66745 E_65420_66745_1_Test2T

DAVEJOHNN65420 E_65300_65420_1_Test2

TCASPERPP

N65300 E_65300_69512_1_Test2T

LATIGO N69512 T-Line

E_69512_69088_1_Test2E

THREEBUTN69088

0.0-0.0

SwitchedShuntE

ShuntC

0.0E-1200.0

0.0-1600.0

SwitchedShuntE

P,QLoad

28.875E10.342

0.0-0.0

SwitchedShuntE

0.0-0.0

SwitchedShuntE

0.0-0.0

SwitchedShuntE

230.0500.0

E

:1

230 0500 0

E_67796_67814_2_Test2T

E_66745_67814_1_Test2T

<-- 2.3 -->T-Line

E_67814_65420_1_Test2E

<-- 2.3 -->T-Line

E_67814_65420_2_Test2E

E_69508_69512_1_Test2T

DUKE EG N69508 Shunt

C0.0

E-10.0

N19038 N24042 N26048

NEQ35MEAD

T-LineE_19038_24042_EQ_Test2

E

NEQ36ELDORDO

T-LineE_24042_26048_EQ_Test2

E

NEQ38MCCULLGH

~E-301.106

248.37 E_19038_0_EQ~

E121.691-903.569 E_24042_0_EQ

~E-1999.28

399.202 E_26048_0_EQ

T-LineE_19038_26048_EQ_Test2

E

NEQ40TEKLA

NEQ60DONKYCRK

NEQ61BARBERCK

A

B

230.0500.0

E

:1 E_67814_69512_1_Test2

T

230.0500.0

E

:1

230.0500.0

E

:1

230.0500.0

E

:1

E_65420_65460_1_Test2T

DIFICULTN65460 E_65460_69028_1_Test2

TDUNLAPTP

N69028 T-LineE_69028_69029_1_Test2

E34.5230.0

E

:1

DNLP1_CLN69030

P,QLoad

0.252E0.092

ShuntC

0.0E-8.0

E_65460_69028_2_Test2T

E_67796_69028_1_Test2T

E_67946_69028_1_Test2T

34.5230.0

E

:1

DNLP2CL1N69033 Shunt

C0.0

E-30.0

34.5230.0

E

:1

DNLP2CL2N69034 Shunt

C0.0

E-30.0

E_65420_73107_1_Test2T

LAR.RIVRN73107 E_73107_73190_1_Test2

TSTEGALL

N73190

0.0-0.0

SwitchedShuntE

T

E_67499_69112_1_Test2T

LATHAM N67499

T-LineE_69112_69121_1_Test2

E

WIND-1HVN69121

T-LineE_69112_69122_1_Test2

E

WIND-2HVN69122

T-LineE_69112_69123_1_Test2

E

WIND-3HVN69123

E_69112_69124_1_Test2T

WIND-4HVN69124

WIND5 TA

N69112

N26044

N69068

N73276

N65300

N73107

N74030 N76401T-LineE_73276_74030_EQ_Test2

E T-LineE_74030_76401_EQ_Test2

E

~E-255.626

14.252 E_73276_0_EQ~

E473.575-14.02 E_74030_0_EQ

~E2.34632

9.33844 E_76401_0_EQ

NEQ32TWE-WY

~E755.159

-33.3995 E_69112_0_EQ

NEQ37MARKETPL

~E-818.66

145.313 E_26044_0_EQ

NEQ39TWOELK

~E255.697

-9.6981 E_69068_0_EQ

NEQ41CASPERPP

~E-449.032

21.8566 E_65300_0_EQ

NEQ42LAR.RIVR

E22 9222E_65420_73190_1_Test2T

115.0230.0

E

:1

DAVEJOHNN65425

13.8230.0

E

:1

DAVEJON3N65440

VN65440

P,QLoad

11.602E12.0

~E229.0

-21.232 E_65440_0_1

22.0230.0

E

:1

DAVEJON4N65445

VN65445

P,QLoad

17.098E17.684

~E328.0

-31.848 E_65445_0_1

34.5230.0

E

:1

YELLOWCKN67456 P,Q

Load10.758

E3.754

T-LineE_65060_73276_1_Test2

E

TEKLA N73276 E_73276_76400_1_Test2

TPUMPKIN

N76400 E_74030_76400_1_Test2T

DONKYCRKN74030

P,QLoad

37.944E12.472

E_67814_76400_1_Test2T

E_76400_76401_1_Test2T

BARBERCKN76401 P,Q

Load99.144

E32.587

13 8230 0 :HARTZOG1E 65060 69068 1 Test2

TTWOELK

N69068

Ideal (R=0)E_69112_69127_1_Test2

E

WIND5-TAN69127

E_67797_69111_1_Test2T

AEOJBC&1N67797 E

J

ANTICLINN67800 0.0

-200.0Switched

ShuntE

N73107

N73190

N65580

N66240

N67499

N67800

~E-22.9222

10.6502 E_73107_0_EQ

NEQ43STEGALL

~E-189.617

-27.5225 E_73190_0_EQ

NEQ44FT CREEK

~E149.158

-9.97972 E_65580_0_EQ

NEQ45PLATTE

~E-52.3101

-23.0566 E_66240_0_EQ

NEQ46LATHAM

~E-162.0

-1.84392 E_67499_0_EQ

NEQ47ANTICLIN

~E-1134.63

-123.167 E_67800_0_EQ

NEQ5213.8230.0

E

:1 N76309 ~

E0.05.4 E_76309_0_1

13.8230.0

E

:1

HARTZOG2N76310 ~

E0.05.4 E_76310_0_1

13.8230.0

E

:1

HARTZOG3N76311 ~

E0.05.4 E_76311_0_1

E_65060_69068_1_Test2

34.5230.0

E

:1

ANT MINEN67025 P,Q

Load18.072

E5.364

E_67814_69000_1_Test2T

GLENRK N69000

34.5230.0

E

:1

GLENRK 1N69001

34.5230.0

E

:1

GLENRK 3N69005

34.5230.0

E

:1

WINDSTARN67832

VN67832~

E600.0136.411 E_67832_0_1

E_67796_69077_1_Test2T

SMPSNHS1N69077 T-Line

E_69077_69078_1_Test2E

SMPSNHS2N69078

34.5230.0

E

:1

SMP2_CL N69079 Shunt

C0.0

E-32.0

34.5230.0

E

:1

SMP3_LC N69082 T-Line

E_69082_69083_1_Test2E

SMP3_LS N69083

ShuntC

0.0E-32.0

T-LineE_69082_69085_1_Test2

E

SMP4_LS N69085

T-LineE_67796_67900_1_Test2

E

AEOLUSVCN67900

VN67900~

E0.035.904 E_67900_0_1

T-LineE_67796_69094_1_Test2

E

12MILE1 N69094 T-Line

E_69094_69060_1_Test2E

12MILE2 N69060

34.5230.0

E

:1

12ML2_CLN69061

12MILE3 12ML3 CL

N69088

N69121

N69122

N69123

N69124

N69508

THREEBUT

~E-9.55453e-014

20.5548 E_69088_0_EQ

NEQ54WIND-1HV

~E492.005

38.8027 E_69121_0_EQ

NEQ55WIND-2HV

~E743.991

56.8726 E_69122_0_EQ

NEQ56WIND-3HV

~E492.009

62.2862 E_69123_0_EQ

NEQ57WIND-4HV

~E770.996

29.217 E_69124_0_EQ

NEQ59DUKE EG

~E0.00402395

1.81024 E_69508_0_EQ

T-LineE_69094_69064_1_Test2

E

12MILE3 N69064

34.5230.0

E

:1

12ML3_CLN69065

34.5230.0

E

:1

12ML1_CLN69095 E_69095_69096_1_Test2

T12ML1_SL

N69096

34.5230.0

E

:1

AEOLUS1 N67833

VN67833~

E465.017.388 E_67833_0_1

34.5230.0

E

:1

7MIHILL1N69025 T-Line

E_69025_69026_1_Test2E

7MIHILL2N69026

E_65580_65975_1_Test2T

FT CREEKN65580

34.5230.0

E

:1

MINERS N65976 P,Q

Load2.686

E1.007

34.5230.0

E

:1

115.0230.0

E

:1

MINERS N67248

34.5230.0

E

:1

HORIZ_CLN69074 Shunt

C0.0

E-8.0

N65425

N67248

N69074

N69001

N69005

N69030

NEQ63DAVEJOHN

~E-34.6206

-34.2481 E_65425_0_EQ

NEQ67MINERS

~E-0.154276

1.21063 E_67248_0_EQ

NEQ68HORIZ_CL

~E-4.99808e-005

2.08215 E_69074_0_EQ

NEQ70GLENRK 1

~E-0.00972928

14.9726 E_69001_0_EQ

NEQ71GLENRK 3

~E-0.00387654

9.69764 E_69005_0_EQ

NEQ72DNLP1_CL

~E-0.000638927

2E1

E_69111_26300_4 TWE-NV N26300 T-Line

E_26300_24042_1_Test2E

ELDORDO N24042 T-Line

E_24042_26048_1_Test2E

MCCULLGHN26048 T-Line

E_26048_26044_1_Test2E

MARKETPLN26044 Ideal (R=0)

E_26044_26120_1_Test2E

MKTPSVC N26120

VN26120

ShuntC

0.0E-1200.0

0.0-1600.0

SwitchedShuntE

~E0.0

0.0 E_26120_0_1

T-LineE_26300_26048_1_Test2

E

T-LineE_26300_26044_1_Test2

E

Ideal (R=0)E_26048_26055_1_Test2

E

MCCULL&1N26055E_19038_26300_1_Test2

TMEAD N19038

13.8500.0

E

:1

CT-1 N69116 Shunt

R1.9044e-005

E0.0

~E325.0

36.178 E_69116_0_1

E_67795_67798_1_Test2T

AEMNC&1AN67798 E

AEMNC&1BN67799 E_67799_67804_1_Test2

TAEMNC&1C

N67804 E

AEMNC&1DN67904 Shunt

R0.025

E0.0

N69033

N69034

N69061

N69065

N69079

5.34205 E_69030_0_EQ

NEQ73DNLP2CL1

~E-0.00141983

4.54047 E_69033_0_EQ

NEQ74DNLP2CL2

~E-0.000692255

3.84771 E_69034_0_EQ

NEQ7512ML2_CL

~E0.000186841

0.0208251 E_69061_0_EQ

NEQ7612ML3_CL

~E-0.00383361

9.33873 E_69065_0_EQ

NEQ77SMP2_CL

~E-0.000489398

4.28707 E_69079_0_EQ

Slide 15

ShuntR

0.025E0.0

ShuntR

0.025E0.0

ShuntR

0.025E0.0

0 0

414 Node Example System

Page 16: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

EMT Tools – New DevelopmentsEMT Tools  New Developments

EMT Analysis CPU Times

267.96250

300

EMT Analysis, CPU Times

136 41

197.72

150

200

Tim

e (s

ec)

One CPU

64.8

136.41

100.57110.45

133.04

86.36 83.6393

50

100

CPU

T Multiple CPUs, same computer

Multiple CPUs, LAN

0

50

1 2 3 4

Size of System

Slide 16

y

Page 17: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

EMT Tools – New DevelopmentsEMT Tools  New Developments

Parallel Processing

• Further time savings:

• Use of different time steps (10 uSec for PWMconverters in wind farms, 50 uSec for large gsystems)

• Isolation of switching devices into separate g psubsystems

• Reduction in memory usage (no swapping)

Slide 17

y g ( pp g)

Page 18: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

EMT Tools – New DevelopmentsEMT Tools  New Developments

Blackboxing

• Wind farms (or any complex models) pre‐compiled, released to customers as a full .exe

• Wind farm runs at its own time step (as tested p (by the manufacturer)

• Works with future program versions and p gcompiler versions etc...

Slide 18

Page 19: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

EMT Tools – New DevelopmentsEMT Tools  New Developments

Hybrid Simulation • Running EMT models imbedded in transient 

stability simulationsstability simulations• Full dynamic transient stability model• “N” interface points to an offshore wind VSC• N  interface points to an offshore wind, VSC 

multi‐terminal grid• Accurate models for VSC inverters and wind farms 

(using real controls), combined with full‐system inter‐area dynamic models of the large system.

Slide 19

Page 20: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Conclusions...Conclusions...

• Using EMT analysis at the planning stage is more commonly required in modern systems

• E‐TRAN program to translate/integrate PSSE (loadflow and transient stability) and ( oad o a d t a s e t stab ty) a dPSCAD/EMTDC (EMT) tools

• Large systems are possible (using powerful• Large systems are possible (using powerful computers and parallel processing)

Slide 20

Page 21: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Conclusions...Conclusions...

Hybrid simulations are here!• Parallel Processing of EMT and TS Tools

• Multiple cores or computers over LAN

• Hybrid Simulation of TS and EMT toolsy• Modeling real controls in TS tools• Easy/accurate custom modeling• “blackbox” to avoid NDA concerns and version 

problems

Slide 21

Page 22: Garth Irwin -2011 EPRI Presentationmydocs.epri.com/docs/publicmeetingmaterials/1108/6... · Classical EMT Uses Electro‐Magnetic Transients Tools • HVDC/FACTS Equipment Design

Thank You!

Garth IrwinGarth [email protected]

Slide 22