Top Banner
BY, KRISHNAPRIYA P D 1 ST MSc ZOOLOGY
25

Gametogenisis

Jan 22, 2018

Download

Education

Krishna Priya
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Gametogenisis

BY,

KRISHNAPRIYA P D

1ST MSc ZOOLOGY

Page 2: Gametogenisis

The origin and development of gametes is called gametogenesis

This may be divided into spermatogenesis and oogenesis.

Spermatogenesis deals with the development of male sex-cells called sperms in the male gonad or testis.

Oogenesis is the development of female sex-cells called ova or eggs in the female gonad or ovary.

Page 3: Gametogenisis
Page 4: Gametogenisis

In males, the spermatogonia enter meiosis and produce sperm from puberty until death.

The process of sperm production takes only a few weeks. Each ejaculation has 100 to 500 million sperm.

In females, this process is more complex. The first meiotic division starts before birth but fails to proceed.

It is eventually completed about one month before ovulation in humans. In humans, the second meiotic division occurs just before the actual process of fertilization occurs.

Only I egg produced

In addition, all meiosis is ended in females at menopause.

Page 5: Gametogenisis
Page 6: Gametogenisis

Spermatogenesis: The entire process of spermatogenesis can be divided

into following two phases:

(A) Formation of Spermatid:

The male gonad known as testis is the site of spermatogenesis. In each vertebrate a pair of testes remains attached to dorsal body wall by a connective tissue called mesorchium .

Each testis is formed of thousands of minute elongated and coiled tubules called seminiferous tubules.

The inner lining of seminiferous tubules is called as germinal epithelium and is made of primordial germ cells (Primary germ cells) as well as some supporting nutritive cells.

Page 7: Gametogenisis
Page 8: Gametogenisis

1. Multiplication Phase

The primary germ cells multiply by repeated mitotic division. The cells produced after the final mitotic divisions are known as spermatogonia or sperm mother cells.

2. Growth Phase

The spermatogonia do not divide for sometime but increase in size by accumulating nutritive materials from the supporting cells.

In mammals such supporting cells are called cells of Sertoli. The enlarged spermatogoniaare now called primary spermatocytes.

3. Maturation Phase: During the phase of maturation, the primary spermatocytes divide by meiosis consisting of

two successive divisions.

The first division is reductional or disjunctional reducing the chromosome number from ‘2n’ to ‘n’. These cells are celled secondary spermatocytes.

Second division is equational resulting in formation of four daughter cells called spermatids.

Page 9: Gametogenisis

(B) Spermiogenesis (Spermatoleosis):

This is the second phase of spermatogenesis during which the spermatids produced at the end of first phase are metamorphosed into sperm cells.

The spermatid is a typical cell containing a nucleus and cytoplasmic organelles such as mitochondria, golgi bodies, centriole etc, but the nucleus only contains haploid number of chromosomes.

During spermiogenesis or spermatoleosis the following transformations occur in the spermatids:

1.The large spherical nucleus becomes smaller by losing water and usually changes its shape into elongated structure.

2. The Golgi bodies condense into a cap called acrosome in front of the nucleus.

3. Nucleus and the acrosome combinedly form the head of the developing sperm while the cytoplasm with mitochondria and centrioles move downwards and form the cylindrical middle piece behind the head

4. The two centrioles of middle piece develop axial filaments which are bunched into a single thread and extend behind in the form of a long vibratile tail. Thus, spermatid is transformed into a motile sperm divisible into head, middle piece and tail.

Page 10: Gametogenisis

Sprem

The mammalian sperm cell consists of a head, a midpieceand a tail.

The head contains the nucleus with densely coiled chromatin fibres, surrounded anteriorly by an acrosome, which contains enzymes used for penetrating the female egg.

The midpiece has a central filamentous core with many mitochondria spiralled around it, used for ATP production for the journey through the female cervix, uterus and uterine tubes.

The tail or "flagellum" executes the lashing movements that propel the spermatocyte.

Page 11: Gametogenisis

During fertilization, the sperm provides three essential parts to the oocyte:

(1) a signalling or activating factor, which causes

the metabolically dormant oocyte to activate;

(2) the haploid paternal genome

(3) the centrosome, which is responsible for maintaining the microtubule system.

Page 12: Gametogenisis
Page 13: Gametogenisis

Oogenesis:

It occurs in the ovary of female animals. It is comparable to spermatogenesis so far as nuclear changes are concerned.

But the cytoplasmic specialization in oogenesis is different from spermatogenesis.

It is divisible into following three phases:

1.Multiplication Phase:

The primary germinal cells of the ovary with diploid number of chromosomes (2n) divide several times mitotically so as to form a large number of daughter cells known as oogonia

Page 14: Gametogenisis
Page 15: Gametogenisis

2. Growth Phase:

The oogonium does not divide but increases in size enormously to form a primary oocyte.

The growth is associated with both nuclear and cytoplasmic growth. The nuclear growth is due to accumulation of large amount of nuclear sap and is termed as germinal vesicle.

The cytoplasmic growth is associated with increase in number of mitochondria, endoplasmic reticulum and Golgi complex and accumulation of reserve food material called yolk or vitellin.

3. Maturation phase: The primary oocyte undergoes two successive divisions by meiosis. The

first division is meiosis-I and two unequal daughter cells are produced.

The large cell is called secondary oocyte containing haploid (n) set of chromosomes (due to reductional or disjunctional division) and entire amount of cytoplasm.

Page 16: Gametogenisis

The smaller cell is called first polar body or polocyte containing ‘n’ number of chromosomes and practically no cytoplasm.

The secondary oocyte and first polar body then undergo second maturation division by meiosis-II which is an equational division.

As a result of this division one large ovum is formed containing entire amount of cytoplasm and ‘n’ number of chromosomes and a second polar body like the first polar body.

Simultaneously, the first polar body may divide into two polar bodies or may not divide at all. Thus only one functional ovum is formed and the two or three polar bodies soon degenerate.

In vertebrates the first polar body is formed after the primary oocyte is released from ovary and has entered into the oviduct. The second polar body is formed only when the sperm enters into ovum during fertilization.

Page 17: Gametogenisis

(C) Ripening of Egg:

Oogenesis is followed by the formation of protective coverings called egg membranes.

Primary membrane is formed surrounding the plasma membrane of ovum and is secreted by the ovum itself. It is called vitellinemembrane in frog and zona pellucida in rabbit.

The secondary membrane called chorion is formed from ovarian follicle cells. The tertiary membranes are secreted in oviduct when the ovum passes from ovary to outside.

The egg white (albumin), calcareous shell etc. come under this category

The ripe ovum is spherical or oval and non-motile. Depending upon the amount of yolk, it may be as small as 0.15 mm as in mammals (microlecithal); it may be 2 mm as in frog (mesolecithal) or it may be as large as 30 mm as in hen (megalecithal).

Page 18: Gametogenisis

In a ripe ovum, the polarity is fixed. The top-most point is animal pole and the

bottom point is vegetal pole. The density of yolky cytoplasm increases from the

animal pole towards the vegetal pole.

In frog, the animal hemisphere is highly pigmented and appears black while the

vegetal hemisphere is highly pigmented and appears white.

Page 19: Gametogenisis
Page 20: Gametogenisis

Significance:

1.The process leads to formation of germ cells or gametes.

2. The normal body cells known as somatic cells are diploid (2n) where as the germ cells are haploid (n).

3. During fertilization one halpoid sperm unites with one haploid ovum to form a normal diploid somatic cell thus keeping the chromosome number constant generation after generation.

4. During first maturation division, the reshuffling of paternal and maternal genes take place resulting in variation.

Page 21: Gametogenisis

Zygote formation

A zygote (from Greek "joined" or "yoked"), is a eukaryotic cell formed by a fertilization event between two gametes.

The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information necessary to form a new individual.

In multicellular organisms, the zygote is the earliest developmental stage.

In single-celled organisms, the zygote can divide asexually by mitosis to produce identical offspring.

Oscar Hertwig and Richard Hertwig made some of the first discoveries on animal zygote formation.

Page 22: Gametogenisis

In human fertilization, a release ovum (a haploid secondary oocyte

with replicate chromosome copies) and a haploidsperm cell

(male gamete)—combine to form a single 2n diploid cell called the

zygote.

Once the single sperm enters the oocyte, it completes the division of

the second meiosis forming a haploid daughter with only 23

chromosomes, almost all of the cytoplasm, and the sprem in its

own pronucleus.

The other product of meiosis II is the second polar body with only

chromosomes but no ability to replicate or survive.

In the fertilized dughter, DNA is then replicated in the two separate

pronuclei derived from the sperm and ovum, making the zygote's

chromosome number temporarily 4n diploid.

Between the stages of fertilization and implantation, the developing

Page 23: Gametogenisis

After approximately 30 hours from the time of fertilization, fusion of the pronuclei and immediate mitotic division produce two 2n diploid daughter cells called blastomeres.

It is not correct to call the conceptus an embryo, because it will later differentiate into both intraembryonic and extraembryonic tissues,and can even split to produce multiple embryos (identical twins).

After fertilization, the conceptus travels down the oviduct towards the uterus while continuing to divide mitotically without actually increasing in size, in a process called cleavage.

After four divisions, the conceptus consists of 16 blastomeres, and it is known as the morula.

Page 24: Gametogenisis

Through the processes of compaction, cell division, and blastulation, the

conceptus takes the form of the blastocyst by the fifth day of

development, just as it approaches the site of implantation.]

When the blastocyst hatches from the zona pellucida, it can implant in

the endometrial lining of the uterus and begin the embryonic stage of

development.

Page 25: Gametogenisis