Top Banner
Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a a Laboratoire d’Automatique, EPFL b Laboratoire d’Énergétique Industrielle, EPFL
44

G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Mar 15, 2016

Download

Documents

tarik-baldwin

Model-Predictive Control (MPC) of an Experimental SOFC Stack: A Robust and Simple Controller for Safer Load Tracking. G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a a Laboratoire d’Automatique, EPFL - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Model-Predictive Control (MPC) of an Experimental SOFC Stack:

A Robust and Simple Controller for Safer Load Tracking

G.A. Bunina, Z. Wuilleminb, G. Françoisa,S. Diethelmb, A. Nakajob, and D. Bonvina

a Laboratoire d’Automatique, EPFLb Laboratoire d’Énergétique Industrielle, EPFL

Page 2: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The Goal of This Talk

To demonstrate that the transient SOFC control problem can be handled very simply, yet robustly, while requiring little control knowledge and only a very basic model of the process.

Page 3: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The Goal of This Talk

To demonstrate that the transient SOFC control problem can be handled very simply, yet robustly, while requiring little control knowledge and only a very basic model of the process.

Page 4: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Outline of the Talk The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

Page 5: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The System Inputs nH2: H2 flux nO2: O2 flux I: current

Safety Constraints Ucell: cell potential ν: fuel utilization λ: air excess ratio

Performance πel: power demand η: electrical efficiency

FuelAir79% N2 21% O2

Power

Current

97% H2 3% H2O

Furnace

6-cellSOFCStack

2 2 2

Reaction:12

H O H O

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency

Control Objective

Track the specified power demand while maximizing the efficiency and honoring the safety constraints.

Page 6: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Outline of the Talk The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency

Page 7: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Basic MPC Principles

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

πel (old)

πel (new)

t0

I = 0 A

I = 30 A

t0 Δt

a1a2

a3a4 a5 a6 a7 a8 ap

t0+pΔt

B = f(a1,…,ap)

Page 8: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Basic MPC Principles

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

πel (old)

πel (new)

t0

I = 0 A

I = 30 A

t0 Δt

t0+pΔt

B = f(a1,…,ap)

t0+mΔt

implement! (…then do it all again)

πel = πel ,0 + BΔI + d

πel,0

d

Page 9: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

MPC with Optimization MPC objective function

Constraints: Ucell ≥ 0.79V, ν ≤ 0.75, 4 ≤ λ ≤ 7

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

2 2

2 22 2 2 2( ) ( ) ( )el cell H OU n n IJ w w w w w w

2 2

newel el cell H Oπ π U .79 ν .75 Δn Δn ΔI

QP Transformation

2

2

2

T T

[ ]

, 2

,

,

1min 2

NmL s.t.: 3.14 1,...,min cm

4 2 7 1,...,

0A 30A

H i

O i

H i

i

n i p

ni p

n

I

H O2 2Δu Δn Δn ΔIΔu HΔu c Δu

1,...,i p

Page 10: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

MPC with Optimization MPC objective function

Constraints: Ucell ≥ 0.79V, ν ≤ 0.75, 4 ≤ λ ≤ 7

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

2 2

2 22 2 2 2( ) ( ) ( )el cell H OU n n IJ w w w w w w

2 2

newel el cell H Oπ π U .79 ν .75 Δn Δn ΔI

πel (low)

πel (high)

efficiency limited by ν

efficiency limited by Ucell

0cellUw

0w πel (mid)

Page 11: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Outline of the Talk The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Page 12: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 13: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 14: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 15: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 16: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 17: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 18: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 19: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 20: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 21: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 22: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 23: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 24: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation HC = “Hard Constraint”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

nH20

InH2 = 3.14mL

nH2 = 10.0mL

I = 30A

Ucell = 0.79Vν = 0.75

Page 25: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Ucell = 0.79V

Page 26: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Ucell = 0.79V

Page 27: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Page 28: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Page 29: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Page 30: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Page 31: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Page 32: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

The HC-MPC Formulation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

4

6

8

10

510

152025

3035

0

5

10

15

20

25

30

nO2nH2

I

λ = 4λ =

7

ν = 0.75

Ucell = 0.79V

Page 33: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Side-by-Side Standard MPC Issues

Weight Tuning Only partially intuitive Requires a good model Need validation

Active Constraint? Must know πel (mid) Degradation!

πel (mid) changes

Violations Norms are directionless Constraints are “soft”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

HC-MPC Solutions Weight Tuning

Completely intuitive Practically no tuning Minimal validation

Active Constraint? ν kept active Degradation?

Doesn’t matter Violations

Inequalities have direction Constraints are “hard”

Page 34: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Intuitive Weight Scheme Sufficient to normalize

weights into 3 categories High Priority (w = 10)

e.g.: power demand Standard Priority (w = 1.0)

e.g.: efficiency (tracking active constraint)

Low Priority (w = 0.1) e.g.: penalties on input

moves (controller behavior)

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Bias Filter α

1 (1 ): convergence

criterion (0 to 1): sampling time

: time to converge

c

tt

c

cc

tt

Page 35: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Side-by-Side Standard MPC Issues

Weight Tuning Only partially intuitive Requires a good model Need validation

Active Constraint? Must know πel (mid) Degradation!

πel (mid) changes

Violations Norms are directionless Constraints are “soft”

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

HC-MPC Solutions Weight Tuning

Completely intuitive Practically no tuning Minimal validation

Active Constraint? ν kept active Degradation?

Doesn’t matter Violations

Inequalities have direction Constraints are “hard”

Page 36: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Outline of the Talk The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Page 37: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

el

(W/c

m2 )

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flux

es (N

mL/

min

/cm

2 )

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

Experimental Validation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

η ≈ 42%

η ≈ 42%

η ≈ 38%

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

el

(W/c

m2 )

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flux

es (N

mL/

min

/cm

2 )

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

Standard MPC HC-MPC

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

standard

HC

Page 38: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

el

(W/c

m2 )

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flux

es (N

mL/

min

/cm

2 )

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

η ≈ 42%

η ≈ 42%

η ≈ 38%

0 10 20 300.25

0.3

0.35

0.4

0.45

Time (min)

el

(W/c

m2 )

0 10 20 3015

20

25

30

Time (min)

I (A

)

0 10 20 300.6

0.65

0.7

0.75

0.8

Time (min)

0 10 20 300

5

10

15

Time (min)

Flux

es (N

mL/

min

/cm

2 )

0 10 20 3035

40

45

50

55

Time (min)

0 10 20 300.75

0.8

0.85

Time (min)

Uce

ll (V)

H2

air

Standard MPC HC-MPC

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 10 20 300.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 10 20 300.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Time (min)

U cell (V

)

0 10 20 300.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Time (min)

U cell (V

)

input regionexpansion

input regioncontraction

standard

HC

Page 39: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Outline of the Talk The System

Basic MPC Theory

Our “HC-MPC” Formulation

Experimental Validation

Concluding Remarks

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

Page 40: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Concluding Remarks The proposed HC-MPC is very effective as it:

does NOT require a good model only four experimental step responses were used here

has only one decision variable for tuning which is very intuitive

minimizes oscillatory behavior and overshoot Potential Applications

The above should hold for more complex systems + gas turbine + steam reforming + heat-load following

Page 41: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Thank You!

Questions?

Page 42: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Extra Slides

Page 43: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a

Experimental Validation

nH2: H2 flux nO2: O2 flux I: current Ucell: potential ν: fuel utilization λ: air ratioπel: power demand η: efficiency p: pred. horizon m: cont. horizon B: dyn. matrix

0 5 10 15 20 25 30 35 40 45 50 55 600.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

el(W

/cm2 )

0 5 10 15 20 25 30 35 40 45 50 55 600.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Time (min)

0 5 10 15 20 25 30 35 40 45 50 55 600.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Time (min)

U cell (V

)

Page 44: G.A. Bunin a , Z. Wuillemin b , G. François a , S. Diethelm b , A. Nakajo b , and D. Bonvin a