Top Banner
2 nd collaboration meeting on X-band Accelerator Structure Design and Test-Program Structure fabrication Comparative analysis of disk and quadrant manufacture G. Riddone 13.05.2008 Acknowledgement: S. Atieh, A. Samoshkin, M. Taborelli, R. Zennaro
21

G. Riddone 13.05.2008

Feb 24, 2016

Download

Documents

keran

2 nd collaboration meeting on X-band Accelerator Structure Design and Test-Program Structure fabrication Comparative analysis of disk and quadrant manufacture. G. Riddone 13.05.2008. Acknowledgement: S. Atieh, A. Samoshkin, M. Taborelli, R. Zennaro. Quadrant-type structures (50 to 300 mm) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: G. Riddone 13.05.2008

2nd collaboration meeting on X-band Accelerator Structure Design and Test-Program 

Structure fabrication

Comparative analysis of disk and quadrant manufacture

G. Riddone

13.05.2008

Acknowledgement: S. Atieh, A. Samoshkin, M. Taborelli, R. Zennaro

Page 2: G. Riddone 13.05.2008

2

Structure fabrication

G. Riddone,13.05.2008

• Quadrant-type structures (50 to 300 mm)• Octant-type structures (300 to 1000 mm)

– Milling- technology used so far:  CNC milling, at high cutting speed (spindles at 20000-50000 rpm)- positioning accuracy of the machine tools is 1 to 5 µm 

• Disk-type structure (f = 35 to 80 mm)– Turning - carbide or diamond (on copper only) tools (ball nose mills)– Milling

Accuracy requirementsAccuracy of manufacturing Surface quality

Summary of what seems to be feasible

Page 3: G. Riddone 13.05.2008

3

Accuracy requirementsMachining Ass. Alignm. Oper.

SHAPE

Shape of an Iris dephasing lower efficiency x -Tuning ±0.001 high local 1

Shape of the matching I ris mismatching lower efficiency x -Tuning ±0.001 high local 2LONGITUDINAL

Expansion of the structure due to the heat dissipation dephasing lower efficiency x

-Thermal elongnation compensated (isotropic) ±0.005 mm low

thermal elongation 3

Relative position of the quadrant or the tilt of the discs.

transverse kick

RF induced transverse kick x x

-Disk tecnology (?)- Average shape assembly ±0.001 mm high bookshelf 4

TRANSVERSE

Relative position of the quadrant wakefieldbeam induced

transverse kick x x- Average shape assembly ±0.005 mm low

maybe allignement

problem 6

Expansion of the structure due to unsymmetric heat dissipation wakefield

beam induced transverse kick x

-Symmetric deformation design ±0.005 mm high bending 5

Thermal isotropic expansion dephasing lower efficiency x-Very accurate water temperature control ±0.1 C° high

Frequency variation of the

structures 10

Supporting of the accelerating structure wakefield

beam induced transverse kick x x x

-Accurate Reference interfaces in structures ±0.005 mm low

structure axis wrto beam axis 9

TILT

Tilt of the full structuretransverse kick

RF induced transverse kick x

-Reference points in the structures

±0.03 mradlow

tilt of full structure 7

Deformation of supporttransverse kick

RF induced transverse kick x Active cooling system

±0.03 mradlow

Support interference 8

CauseCriticality Comments SchemeMagnitude of

tollerance (mm) Item Effect of the item Performance Solution

x

xx

x

x

x

G. Riddone,13.05.2008

e.g. CLIC_G, 120⁰ df/dB~ 1 MHz/mm, 

 d/dB~ 1 ⁰ /mm)(B= radius of the cell)

Page 4: G. Riddone 13.05.2008

4

Quadrant structures

G. Riddone,13.05.2008

Avoid steps and kinks on the surfaces (field enhancement b)Ra should be around ¼ of the skin depth to preserve  electrical conductivity 

Frequency matching or tuning

Page 5: G. Riddone 13.05.2008

5

Octant structures

G. Riddone,13.05.2008

Page 6: G. Riddone 13.05.2008

6

•  machining by 3D milling (carbide or diamond tools)•  alignment of the quadrants by pins or balls and gooves (plastic deformation of copper)  difficulty in controlling the gap between quadrant, errors in the groove

•  assembly by brazing or by bolting•  damping implemented in the design

160 mm

Quadrants/octants: machining by milling

300 mm

30 GHz 11.4 GHz

G. Riddone,13.05.2008

Page 7: G. Riddone 13.05.2008

7

Achieved shape accuracy (quadrant/octants) 

G. Riddone,13.05.2008

Page 8: G. Riddone 13.05.2008

8

Possible sources of errors in 3D milling

TOOL ERRORS• Error on tool diameter, tool length, tool run-out: dynamic 

dimensions• Error on tool shape• Tool flexure (larger tools at 11.4 GHz should be favorable)• Tool consumption during machiningTEMPERATURE• Thermal expansion of the piece• Temperature stability, dynamics of the machine toolPOSITIONING ERRORS• Positioning accuracy (originated from geometric, cutting 

force, dynamic loading) of the machine tool (machine tool with higher nominal accuracy give better surface finish)

G. Riddone,13.05.2008

Page 9: G. Riddone 13.05.2008

9

Surface quality (str. in quadrants)

Ra=0.02-0.2Ra= 0.2-0.4

Diamond millingConventional tools milling

0.01 mm 0.01 mm

G. Riddone,13.05.2008

1 mm 1 mm

Page 10: G. Riddone 13.05.2008

10

Disks: machining by turning and milling• Disks: machining by diamond turning• Adding damping features  Needs milling (no circular symmetry) with smooth 

transition between milled and turned surfaces. Relative positioning at mm level is necessary! alignment of the damping waveguides is necessary: wake-fields are used by BPM

• Alignment of the disks on V-shaped marble before assembly in a stack: use external “cylinder” surface as reference.

• Assembly by vacuum brazing or by bolting

G. Riddone,13.05.2008

Page 11: G. Riddone 13.05.2008

11

Disk dumped structures

G. Riddone,13.05.2008

Page 12: G. Riddone 13.05.2008

12

Assembly by brazing

Bookshelfing: assembly on a slopeV-bench gives “tilted” discs

Smaller and random error: assembly on vertical V-benchas a tower

5 μm

The type of error depends on the assembly procedure

Achieved accuracy for brazing assembly of disc structures: better than 5 µm 

G. Riddone,13.05.2008

Page 13: G. Riddone 13.05.2008

13

Recrystallization after thermal treatment (vacuum brazing cycle at 820 C)Ra = 0.05 mm

Surface quality (str. in disks, Cu OFE)

G. Riddone,13.05.2008

0.01 mm1 mm

1 mm 0.1 mm

Page 14: G. Riddone 13.05.2008

14

Disk undamped structure (prototype)11WNSDvg1Cu

G. Riddone,13.05.2008

Page 15: G. Riddone 13.05.2008

15

Achieved accuracy (prototype)

Specification

11WNSDvg1Cu

G. Riddone,13.05.2008

Page 16: G. Riddone 13.05.2008

16

Summary – what seems to be feasible

• Structure in quadrants– Milling  accuracy for structures up to 500 mm  < +/-2.5 μm– Milling accuracy for structures up to 1000 mm  < +/-20 μm– Ra_best = 0.05 μm– Assembly is a critical point: accurate assembly method to be 

developed (optical methods) • Structures in disks

–  TurningØ 35 mm, accuracy < +/-1 μmØ 80 mm, accuracy < +/-1.5 μmRa_best = 0.001 μm

– MillingAccuracy < +/- 2.5 μmRa_best = 0.05 μm

– Assembly by brazing (vertical assembly better): < +/- 2.5 μm

G. Riddone,13.05.2008

Page 17: G. Riddone 13.05.2008

17 G. Riddone,13.05.2008

Page 18: G. Riddone 13.05.2008

18

Effect on thermal treatment

Solvent cleaned

Vacuum baked 750C x 1h

Milled surface(carbide tools)

10 µm

10 µm

G. Riddone,13.05.2008

Page 19: G. Riddone 13.05.2008

19

Diamond tools vs. Carbide tools 

Low coefficient of friction and smoothness

High thermal conductivity

Low compressibility

Low thermal expansion

- Dimensional stability

- Maintenance of tolerances

- Chips do not adhere to surface

G. Riddone,13.05.2008

Page 20: G. Riddone 13.05.2008

20 G. Riddone,13.05.2008

Page 21: G. Riddone 13.05.2008

21

High speed milling machine tool

Diamond fly-cut

G. Riddone,13.05.2008