Top Banner
©2002 ©2002 Intel Corp. Intel Corp. Page Page 1 1 Robert Yung Robert Yung Future Trend of Microprocessor Design: Future Trend of Microprocessor Design: Challenges and Realities Challenges and Realities Robert Yung, Ph.D. Robert Yung, Ph.D. Chief technology officer, Enterprise Processors Chief technology officer, Enterprise Processors ( ( [email protected] [email protected] ) ) Stefan Rusu Stefan Rusu Senior Principal Engineer Senior Principal Engineer ( ( [email protected] [email protected] ) ) Kenneth Shoemaker Kenneth Shoemaker Senior Principal Engineer Senior Principal Engineer ( ( [email protected] [email protected] ) ) Intel Corporation Intel Corporation ESSCIRC / ESSDERC 2002 ESSCIRC / ESSDERC 2002 Sept 25, 2002 Sept 25, 2002
31

Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

Aug 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp.Page Page 11

Robert YungRobert Yung

Future Trend of Microprocessor Design:Future Trend of Microprocessor Design:Challenges and RealitiesChallenges and Realities

Robert Yung, Ph.D.Robert Yung, Ph.D.Chief technology officer, Enterprise ProcessorsChief technology officer, Enterprise Processors

(([email protected]@intel.com))

Stefan RusuStefan RusuSenior Principal EngineerSenior Principal Engineer(([email protected]@intel.com))

Kenneth ShoemakerKenneth ShoemakerSenior Principal EngineerSenior Principal Engineer

(([email protected]@intel.com))

Intel CorporationIntel CorporationESSCIRC / ESSDERC 2002ESSCIRC / ESSDERC 2002

Sept 25, 2002Sept 25, 2002

Page 2: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 22Robert YungRobert Yung

AgendaAgenda

•• Process Driven TrendsProcess Driven Trends–– Moore’s LawMoore’s Law–– Transistors: Frequency, Power, Gate LengthTransistors: Frequency, Power, Gate Length–– Interconnection: WiresInterconnection: Wires–– Power DissipationPower Dissipation–– PackagingPackaging

•• Architecture Driven TrendsArchitecture Driven Trends–– Increased ParallelismIncreased Parallelism–– Cache And MemoryCache And Memory–– Input/OutputInput/Output

•• ConclusionConclusion

Page 3: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 33Robert YungRobert Yung

Microprocessor Evolution

•• 40044004–– 19711971–– 2300 transistors2300 transistors–– 10um process10um process–– 2”, 50mm wafer2”, 50mm wafer–– 12mm12mm22

–– 108 kHz108 kHz

•• PentiumPentium®® 4 processor4 processor–– 2002 (31 yrs)2002 (31 yrs)–– 55M (24K X)55M (24K X)–– 0.13um (1/77 X)0.13um (1/77 X)–– 12”, 300mm (6X)12”, 300mm (6X)–– 142mm142mm22 (12 X)(12 X)–– 2.8 GHz (26K X)2.8 GHz (26K X)

•• ItaniumItanium®® 2 processor2 processor–– 2002 (31 yrs)2002 (31 yrs)–– 220M (96K X)220M (96K X)–– 0.18um (1/55 X)0.18um (1/55 X)–– 12”, 300mm (6X)12”, 300mm (6X)–– 421mm421mm22 (35 X)(35 X)–– 1 GHz (9K X)1 GHz (9K X)

Page 4: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1980 1990 2000 2010

Tran

sist

ors

386

486

Pentium®

286

Pentium® II

Pentium® III Pentium® 4

8086

8080

8008

Moore’s Law ContinuesMoore’s Law Continues

•• Transistors per IC doubles every two yearsTransistors per IC doubles every two years•• In less than 30 yearsIn less than 30 years

–– 1,000X decrease in size1,000X decrease in size–– 10,000X increase in performance10,000X increase in performance–– 10,000,000X reduction in cost10,000,000X reduction in cost

•• Heading toward 1 billion transistors before end of this decadeHeading toward 1 billion transistors before end of this decade

Page 5: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 55Robert YungRobert Yung

In the Last 25 YearsIn the Last 25 YearsLife was EasyLife was Easy

•• Die sizes increase, allowed by Die sizes increase, allowed by –– Increasing wafer sizeIncreasing wafer size–– Process technology moving from “black art” Process technology moving from “black art”

to “manufacturing science”to “manufacturing science”•• Doubling of transistors every 18 monthsDoubling of transistors every 18 months•• And, only constrained by cost & mfg. limitsAnd, only constrained by cost & mfg. limits

What Are The Future Challenges?What Are The Future Challenges?What Are The Future Challenges?

Page 6: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 66Robert YungRobert Yung

10

100

1000

1971 1976 1981 1986 1991 1996 2001

Die

siz

e (m

m2 )

0.1

1

10

Feat

ure

size

(um

)

Feature, Die Size TrendFeature, Die Size Trend

•• 30% feature size reduction every 3 and now 2 yrs30% feature size reduction every 3 and now 2 yrs•• Before mid 1990’s, 7% die size increase/yr; lithography limitedBefore mid 1990’s, 7% die size increase/yr; lithography limited•• After that, die size growth will be limited by power dissipationAfter that, die size growth will be limited by power dissipation

Page 7: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 77Robert YungRobert Yung

Processor Frequency TrendProcessor Frequency Trend

•• Gates per clock reduces by 25% each generation; Gates per clock reduces by 25% each generation; leveling outleveling out•• Frequency doubles each generation enabled by advancedFrequency doubles each generation enabled by advanced

circuit and architectural techniquescircuit and architectural techniques

10

100

1000

10000

1987 1989 1991 1993 1995 1997 1999 2001 2003

Freq

uenc

y [M

Hz]

1

10

100

386486

Pentium®

Pentium Pro®

Pentium® II Pentium® III

Pentium® 4

# G

ates

per

clo

ck

Page 8: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 88Robert YungRobert Yung

Processor Power TrendProcessor Power Trend

•• Lead processor power increases every generation Lead processor power increases every generation —— power power constrainedconstrained•• VccVcc will scale by only 0.8 (not 0.7)will scale by only 0.8 (not 0.7)•• Active power will scale by ~0.9 (not 0.5)Active power will scale by ~0.9 (not 0.5)•• Active power density will increase by ~30Active power density will increase by ~30--80% (not constant)80% (not constant)•• Leakage power will make it worse as process shrinksLeakage power will make it worse as process shrinks

•• Process scaling provides higher performance at lower powerProcess scaling provides higher performance at lower power

0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500Frequency [MHz]

Pow

er [W

]Pentium® 40.18um

Pentium® 40.13um

Pentium® III0.13um

Pentium® III0.18um

Page 9: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 99Robert YungRobert Yung

Some ImplicationsSome Implications

•• Moore’s Law will continue beyond this decadeMoore’s Law will continue beyond this decade–– 2X transistors growth per technology generation2X transistors growth per technology generation

•• Die size increase will level outDie size increase will level out–– Constraint is power Constraint is power –– not manufacturabilitynot manufacturability

•• Frequency will continue to increaseFrequency will continue to increase–– Faster process, advanced microFaster process, advanced micro--architecturearchitecture–– Reduction of gates per clock will slow downReduction of gates per clock will slow down

•• What is the future look like?What is the future look like?–– Process technology trendProcess technology trend–– Microprocessor and platform architectural trendMicroprocessor and platform architectural trend

Page 10: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1010Robert YungRobert Yung

AgendaAgenda

•• Process Driven TrendsProcess Driven Trends–– Moore’s LawMoore’s Law–– Transistors: Frequency, Power, Gate LengthTransistors: Frequency, Power, Gate Length–– Interconnection: WiresInterconnection: Wires–– Power DissipationPower Dissipation–– PackagingPackaging

•• Architecture Driven TrendsArchitecture Driven Trends–– Increased ParallelismIncreased Parallelism–– Cache And MemoryCache And Memory–– Input/OutputInput/Output

•• ConclusionConclusion

Page 11: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1111Robert YungRobert Yung

Transistor Physical Gate Length Transistor Physical Gate Length

Source: Robert Chau, 12/2001Source: Robert Chau, 12/2001

30nm

0.18um0.13um

90nm65nm

45nm

0.25um0.35um

0.5um

15nm

130nm

0.2um

70nm

50nm

30nm20nm

0.01

0.1

1

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Mic

ron

Technology NodeTechnology Node

Transistor Physical Transistor Physical Gate LengthGate Length

New Process Generation Every 2 Years New Process Generation Every 2 Years New Process Generation Every 2 Years

Page 12: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1212Robert YungRobert Yung

Process Technology TrendsProcess Technology Trends

Intel: To the Terahertz TransistorIntel: To the Terahertz TransistorTransistor Leadership ContinuesTransistor Leadership Continues

Page 13: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1313Robert YungRobert Yung

SRAM Cell Size ScalingSRAM Cell Size Scaling

•• SRAM cell size will continue to scale ~0.5x per generationSRAM cell size will continue to scale ~0.5x per generation•• Larger caches can be incorporated on dieLarger caches can be incorporated on die

44

21

10.65.6

2.1 1.005

101520253035404550

SRA

M C

ell S

ize

(um

2 )

0.5 0.35 0.25 0.18 0.13 0.09

Technology Generation (um)

Page 14: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1414Robert YungRobert Yung

AgendaAgenda

•• Process Driven TrendsProcess Driven Trends–– Moore’s LawMoore’s Law–– Transistors: Frequency, Power, Gate LengthTransistors: Frequency, Power, Gate Length–– Interconnection: WiresInterconnection: Wires–– Power DissipationPower Dissipation–– PackagingPackaging

•• Architecture Driven TrendsArchitecture Driven Trends–– Increased ParallelismIncreased Parallelism–– Cache And MemoryCache And Memory–– Input/OutputInput/Output

•• ConclusionConclusion

Page 15: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1515Robert YungRobert Yung

OnOn--chip Interconnect Trendchip Interconnect Trend

0.1

1

10

100250 180 130 90 65 45 32

Feature size (nm)Relativedelay

Gate delay (fanout 4)Local interconnect (M1,2)Global interconnect with repeatersGlobal interconnect without repeaters

•• Local interconnects scale with gate delayLocal interconnects scale with gate delay•• Intermediate interconnects benefit from low k materialIntermediate interconnects benefit from low k material•• Global interconnects do not scale because of RC!Global interconnects do not scale because of RC!

More metal layers may not helpMore metal layers may not help

Source: ITRS, 2001Source: ITRS, 2001

Page 16: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1616Robert YungRobert Yung

Pipe Length vs. Frequency TrendPipe Length vs. Frequency Trend

•• As feature size reduces, longer pipeline enables higher frequencAs feature size reduces, longer pipeline enables higher frequencyy•• Performance benefits from higher frequency, advanced microPerformance benefits from higher frequency, advanced micro--

architectural techniques, larger cachesarchitectural techniques, larger caches

0

500

1000

1500

2000

2500

3000

100300500700900feature size (nm)

Frequency (Mhz)

0

500

1000

1500

2000

2500

3000re

lativ

e in

tege

r pe

rform

ance

5 stages: Pentium5 stages: Pentium®®

20 stages (OOO): Pentium20 stages (OOO): Pentium®® 44

10 stages (OOO): Pentium10 stages (OOO): Pentium®®IIIIII

Page 17: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1717Robert YungRobert Yung

AgendaAgenda

•• Process Driven TrendsProcess Driven Trends–– Moore’s LawMoore’s Law–– Transistors: Frequency, Power, Gate LengthTransistors: Frequency, Power, Gate Length–– Interconnection: WiresInterconnection: Wires–– Power DissipationPower Dissipation–– PackagingPackaging

•• Architecture Driven TrendsArchitecture Driven Trends–– Increased ParallelismIncreased Parallelism–– Cache And MemoryCache And Memory–– Input/OutputInput/Output

•• ConclusionConclusion

Page 18: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1818Robert YungRobert Yung

Power Density: Cache vs. LogicPower Density: Cache vs. Logic

•• As die temperature increases, CMOS logic slows downAs die temperature increases, CMOS logic slows down•• With low power density (past), can assume uniformityWith low power density (past), can assume uniformity•• With increasing power density and onWith increasing power density and on--die caches, need to die caches, need to

consider simplistic nonconsider simplistic non--uniformityuniformity

X1

X3

X5

X7

X9

X11

X13

X15

X17

X19

Y1

Y4

Y7

Y10

Y13

Y16Y19

0

10

20

30

40

50

60

X1

X3

X5

X7

X9

X11

X13

X15

X17

X19

Y1

Y4

Y7

Y10

Y13

Y16Y19

0

10

20

30

40

50

60

X1

X4

X7

X10

X13

X16

X19

Y1

Y4

Y7

Y10Y13

Y16Y19

0

10

20

30

40

50

60

X1

X4

X7

X10

X13

X16

X19

Y1

Y4

Y7

Y10Y13

Y16Y19

0

10

20

30

40

50

60

Past: Thermal UniformityPast: Thermal Uniformity Present: Logic vs. CachePresent: Logic vs. Cache

Caches

Core logic

Page 19: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 1919Robert YungRobert Yung

Power Density: The FuturePower Density: The Future

•• With high power density, cannot assume uniformityWith high power density, cannot assume uniformity–– As die temperature increases, CMOS logic slows downAs die temperature increases, CMOS logic slows down–– At high die temp., longAt high die temp., long--term reliability can be compromisedterm reliability can be compromised

0

50

100

150

200

250

Hea

t Flu

x (W

/cm

2)

40

50

60

70

80

90

100

110

Tem

pera

ture

(C)

Power MapPower Map OnOn--Die TemperatureDie Temperature

Hot Spots RemainHot Spots Remain

Page 20: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2020Robert YungRobert Yung

Power ManagementPower Management

•• Intel Intel SpeedstepSpeedstep®® Technology (Technology (GeyservilleGeyserville))–– VoltageVoltage--freq scaling with active thermal feedbackfreq scaling with active thermal feedback–– MultiMulti--operating states from high operating states from high perfperf. to deep sleep. to deep sleep

•• Throttling to reduce instruction rateThrottling to reduce instruction rate•• Power management reduces average and peak power dissipationPower management reduces average and peak power dissipation•• Trend: Static logic, clock gating, split power planes, active poTrend: Static logic, clock gating, split power planes, active power mgmt.wer mgmt.

FrequencyFrequency

Pow

erPo

wer

MinimumMinimumOperating Operating VoltageVoltage

Power Power αα VV33

Most efficient Most efficient operating pointoperating point

IncreasingIncreasingPerformancePerformance

Increasing EfficiencyIncreasing Efficiency(Freq/Power)(Freq/Power)

Max PerformanceMax Performance

Power scalingPower scalingrange ~ 3range ~ 3--44

Deep Sleep /Deep Sleep /Quick Start Quick Start

Page 21: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2121Robert YungRobert Yung

AgendaAgenda

•• Process Driven TrendsProcess Driven Trends–– Moore’s LawMoore’s Law–– Transistors: Frequency, Power, Gate LengthTransistors: Frequency, Power, Gate Length–– Interconnection: WiresInterconnection: Wires–– Power DissipationPower Dissipation–– PackagingPackaging

•• Architecture Driven TrendsArchitecture Driven Trends–– Increased ParallelismIncreased Parallelism–– Cache And MemoryCache And Memory–– Input/OutputInput/Output

•• ConclusionConclusion

Page 22: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2222Robert YungRobert Yung

Microprocessor Packaging

•• 1971 1971 –– 4004 Processor4004 Processor–– 1616--pin ceramic packagepin ceramic package–– wire bond attachwire bond attach–– 750Khz I/O750Khz I/O

•• 2002 2002 -- PentiumPentium®® 4 Processor4 Processor–– 478478--pin organic packagepin organic package–– flipflip--chip attachchip attach–– 133Mhz, quad133Mhz, quad--pumped I/Opumped I/O

Page 23: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2323Robert YungRobert Yung

FCPGA vs. BBULFCPGA vs. BBUL

•• Package built around diePackage built around die shorter profileshorter profile smaller form factorsmaller form factor•• Results inResults in lower inductance, higher frequencylower inductance, higher frequency

Page 24: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2424Robert YungRobert Yung

AgendaAgenda

•• Process Driven TrendsProcess Driven Trends–– Moore’s LawMoore’s Law–– Transistors: Frequency, Power, Gate LengthTransistors: Frequency, Power, Gate Length–– Interconnection: WiresInterconnection: Wires–– Power DissipationPower Dissipation–– PackagingPackaging

•• Architecture Driven TrendsArchitecture Driven Trends–– Increased ParallelismIncreased Parallelism–– Cache And MemoryCache And Memory–– Input/OutputInput/Output

•• ConclusionConclusion

Page 25: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2525Robert YungRobert Yung

Apps Show Different Sensitivity To Bandwidth And CPU FrequencyApps Show Different Sensitivity To Bandwidth And CPU FrequencyApps Show Different Sensitivity To Bandwidth And CPU Frequency

CPU, Memory Sensitivity of AppsCPU, Memory Sensitivity of Apps

wupwisewupwise quake IIIquake III

apsiapsi

fma3dfma3d

bzip2bzip2

artart

equakeequake

mgridmgridmcfmcf

lucaslucas

appluapplu

swim

swim ammpammp

galgelgalgel

facerecfacerec

flask_mpegflask_mpegvolanovolano sony_mpeg2sony_mpeg2

parserparserV

ortexV

ortexvprvprsony_mpeg4sony_mpeg4

gccgcc

perlbmk

perlbmk

twolf

twolf

gapgapcraftycraftysixtrack

sixtrack

mesa

mesa

sony_mpeg1

sony_mpeg1

flaskflask

eoneon

media_encoder

media_encoder

Sensitivity to CPU GHzSensitivity to CPU GHz

Sens

itivi

ty to

DR

AM

Ban

dwid

thSe

nsiti

vity

to D

RA

M B

andw

idth

Multi Media AppsMulti Media AppsMulti Media Apps

EngineeringAnalysis AppsEngineeringEngineering

Analysis AppsAnalysis Apps

Productivity Apps

Productivity Productivity AppsApps

Memory Performance mattersMemory Performance matters

CPU, Memory mattersCPU, Memory matters

CPU performance mattersCPU performance matters

Page 26: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2626Robert YungRobert Yung

ProcessorProcessor--DRAM Gap (latency)DRAM Gap (latency)

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005

Rel

ativ

e Pe

rfor

man

ce

DRAMCPU

Processor-DRAM Gap Grows >40% YearProcessorProcessor--DRAM Gap Grows >40% YearDRAM Gap Grows >40% Year

DRAM growth ~7%/yr

Processor growth >50%/yr

Growing gap

Page 27: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2727Robert YungRobert Yung

Bus Bandwidth TrendBus Bandwidth Trend

0

1000

2000

3000

4000

5000

386

486

Pent

ium

®

Pent

ium

®Pr

o

Pent

ium

® II

(.35u

)

Pent

ium

® II

(.25u

)

Pent

ium

® II

I(.2

5u)

Pent

ium

® II

I(.1

8u)

Pent

ium

® 4

(.18u

)

Pent

ium

® 4

(.13u

)

Bus

Ban

dwid

th (M

B/s

ec)

Memory And I/O Bandwidth Are Crucial For High Performance Memory And I/O Bandwidth Are Crucial For High Performance Memory And I/O Bandwidth Are Crucial For High Performance

Page 28: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2828Robert YungRobert Yung

Cache Memory TrendCache Memory Trend

0123456789

10

386

486

Pent

ium

Pent

ium

Pro

Pent

ium

II(0

.35u

m)

Pent

ium

II(0

.25u

m)

Pent

ium

III(0

.25u

m)

Pent

ium

III(0

.18u

m)

Pent

ium

4(0

.18u

m)

Pent

ium

4(0

.13u

m)

cach

e la

tenc

y

1

10

100

1000

cach

e si

ze

L1 cache latencyL2 cache latencyL1 cache sizeL2 cache size

• Hierarchy of caches reduce widening CPU-memory gap

• Reduce average miss rates

• Reduce average memory access latency

•• Hierarchy of caches reduce widening CPUHierarchy of caches reduce widening CPU--memory gapmemory gap

•• Reduce average miss ratesReduce average miss rates

•• Reduce average memory access latencyReduce average memory access latency

Page 29: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 2929Robert YungRobert Yung

Itanium® 2 Processor

•• Transistors: 221MTransistors: 221M–– Caches, I/O: 3.3MB or ~170M (75%)Caches, I/O: 3.3MB or ~170M (75%)–– Core: ~51M (25%)Core: ~51M (25%)

•• Die size: 19.5 x 21.6mm = 421 mmDie size: 19.5 x 21.6mm = 421 mm22

–– Caches, I/O: L3C ~50%; others ~16%Caches, I/O: L3C ~50%; others ~16%–– Core: 142mmCore: 142mm22 (34%)(34%)

Caches becoming an increasing portion of the die because of its performance impact and low power density

Caches becoming an increasing portion of the die because Caches becoming an increasing portion of the die because of its performance impact and low power densityof its performance impact and low power density

Page 30: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

©2002©2002 Intel Corp.Intel Corp. Page Page 3030Robert YungRobert Yung

ConclusionConclusion•• Moore’s Law will continue beyond this decadeMoore’s Law will continue beyond this decade

–– 2X transistors growth per technology generation2X transistors growth per technology generation–– 30nm and smaller transistors realized30nm and smaller transistors realized

•• Die size increase will level outDie size increase will level out–– Constraint is power Constraint is power –– not manufacturabilitynot manufacturability–– Increasing cache sizes and multiIncreasing cache sizes and multi--cores on die enable cores on die enable

performance increase within power constraintperformance increase within power constraint

•• Towards 10Ghz microprocessor in this decadeTowards 10Ghz microprocessor in this decade–– Faster processFaster process–– Advanced architectural and circuit techniquesAdvanced architectural and circuit techniques

•• ProcessorProcessor--Memory gap continues to growMemory gap continues to grow–– Larger caches help reduce impactLarger caches help reduce impact–– Innovative processorInnovative processor--cache memory design crucial to cache memory design crucial to

continual performance scalingcontinual performance scaling

Page 31: Future Trend of Microprocessor Designvojin/CLASSES/EEC280/F2002/yungES… · Robert Yung ©2002 Intel Corp. Page Page 33 Microprocessor Evolution • 4004 – 1971 – 2300 transistors

Page Page 3131Robert YungRobert Yung

®®