Top Banner

of 17

Fundametals of Analog Electronics_part II

Apr 09, 2018

Download

Documents

virendra_verma5
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/7/2019 Fundametals of Analog Electronics_part II

    1/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    German-Jordanian University

    School of Applied Natural Sciences -

    Energy Engineering

    Bipolar Junction Transistor

    Configurations:

    Common Base Configuration

    Fig. 3.2 Types of transistors: (a) pnp; (b) npn.Fig. 3.6 Notation and symbols used with the

    common-base configuration: npn transistor.

    Fig. 3.8 Output or collector characteristics for a common-base transistor amplifier.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    2/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Common Emitter Configuration

    Common Collector Configuration

    Fig. 3.13 Notation and symbols used with the

    common-emitter configuration: npn transistor

    Fig. 3.14 Characteristics of a silicon transistor in the common-emitter configuration: (a) collector characteristics; (b)

    base characteristics.

    Fig. 3.20 Notation and symbols used with the common-collector

    configuration: (a) pnp transistor; (b) npn transistor.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    3/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Operating Point

    Fixed Bias Circuit

    Fig. 4.1 Various operating points within the limits of operation of a transistor.

    Fig. 4.2 Fixed-bias circuit.

    Fig. 4.3 DC equivalent of Fig. 4.2.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    4/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Fig. 4.4 Baseemitter loop.Fig. 4.5 Collectoremitter loop.

    Fig. 4.7 DC fixed-bias circuit for Example 4.1.

    Fig. 4.9 Determining ICsat. Fig. 4.10 Determining ICsat for the fixed-bias configuration.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    5/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Emitter Bias

    Fig. 4.17 BJT bias circuit with emitter resistor.Fig. 4.18 Baseemitter loop.

    Fig. 4.19 Network derived from the result of Fig.4.18

    Fig. 4.20 Reflected impedance level of RE.

    Fig. 4.21 Collectoremitter loop.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    6/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Design Operation

    Transistor Switching Network

    Fig. 4.48 Example 4.19. Fig. 4.49 Example 4.20.

    Fig. 4.53 Transistor inverter.

    Saturation conditions and the

    resulting terminal resistance.

    Cutoff conditions and the

    resulting terminal resistance.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    7/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Fig. 4.56 Inverter for Example 4.24.

    Fig. 4.57 Defining the time intervals of a pulse waveform.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    8/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    German-Jordanian University

    School of Applied Natural Sciences -Energy Engineering

    Bipolar Junction Transistor

    AC Analysis: A model is an equivalent circuit that represents the AC characteristics of the

    transistor.

    A model uses circuit elements that approximate the behavior of the transistor. There are two models commonly used in small signal AC analysis of a

    transistor:

    re model Hybrid equivalent model

    The reTransistor Model:

    BJTs are basically current-controlled devices, therefore the re model uses a diode and a

    current source to duplicate the behavior of the transistor. One disadvantage to this model is its

    sensitivity to the DC level. This model is designed for specific circuit conditions.

    Common Base Configuration

    Fig. 5.6 (a) Common-base BJT transistor; (b) re model for the configuration of (a).

    Fi . 5.7 Common-base re e uivalent circuit.

    Fig. 5.9 Defining Av = Vo/Vi for the common-base configuration.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    9/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Common Emitter Configuration

    Common Collector Configuration

    Use the common-emitter model for the common-collector configuration.

    Fig. 5.11 (a) Common-emitter BJT transistor; (b) approximate model for the configuration of a).

    Fig. 5.17 re model for the common-emitter transistorconfiguration.

    Fig. 5.12 Determinin Zi usin the a roximate

    Fig. 5.16 Determining the voltage and current gain for the

    common-emitter transistor am lifier.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    10/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    The Hybrid Equivalent Model:

    The following hybrid parameters are developed and used for modeling the transistor.

    These parameters can be found in a specification sheet for a transistor:

    hi = input resistance hr= reverse transfer voltage ratio (Vi/Vo) 0 hf= forward transfer current ratio (Io/Ii) ho = output conductance

    Fig. 5.22 Complete hybrid equivalent circuit.

    Fig. 5.23 Common-emitter configuration: (a) graphical symbol; (b) hybrid equivalent

    Fig. 5.24 Common-base configuration: (a) graphical symbol; (b) hybrid equivalent

    circuit.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    11/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Common-Emitter re vs. h-Parameter Model

    Fig. 5.25 Effect of removing hre and hoe from the hybird equivalent circuit.

    Fig. 5.26 Approximate hybrid equivalent model.

    Fig. 5.27 Hybrid versus re model: (a) common-emitter configuration; (b) common-base configuration.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    12/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    German-Jordanian University

    School of Applied Natural Sciences -

    Energy Engineering

    BJT Amplifier Circuits:

    Common Emitter Configurations:

    Common Emitter Fixed-bias The input is applied to the base The output is from the collector High input impedance Low output impedance High voltage and current gain Phase shift between input and output is 180

    Fig. 5.34 Common-emitter fixed-bias configuration.

    Fig. 5.35Network of Fig. 5.34 following the removalof the effects ofVCC, C1 and C2.

    Fig. 5.36 Substituting the re model into the network of Fig.5.35.

    Fig. 5.37DeterminingZo for the network of Fig. 5.36.

    Co 10Rr

    e

    Cv

    e

    oC

    i

    ov

    r

    RA

    r

    )r||(R

    V

    VA

    eBCo r10R,10Rri

    eBCo

    oB

    i

    oi

    A

    )r)(RR(r

    rR

    I

    IA

    C

    ivi

    R

    ZAA

  • 8/7/2019 Fundametals of Analog Electronics_part II

    13/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Common Emitter Voltage-divider Bias

    Fig. 5.39 Example 5.4.

    Fig. 5.40 Voltage-divider bias configuration.

    Fig. 5.41Substituting the re equivalent circuit into the ac equivalent network of Fig. 5.40.

    eCo

    Co

    r10R,10Rr

    i

    oi

    10Rr

    ei

    oi

    eCo

    o

    i

    oi

    I

    IA

    rR

    R

    I

    IA

    )rR)(R(rrR

    IIA

    C

    ivi

    R

    ZAA

    Co 10Rr

    e

    C

    i

    ov

    e

    oC

    i

    ov

    r

    R

    V

    VA

    r

    r||R

    V

    VA

    Fig. 5.38 Demonstrating the 180 phase shift between input and outputwaveforms.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    14/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Fig. 5.42 Example 5.5.

    Common Emitter Bias

    Fig. 5.43 CEemitter-bias configuration.Fig. 5.46 Example 5.6.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    15/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Common Base Configuration

    The input is applied to the emitter. The output is taken from the collector. Low input impedance. High output impedance. Current gain less than unity. Very high voltage gain. No phase shift between input and output.

    Fig. 5.44 Substituting the re equivalent circuit into the ac equivalent

    network of Fig. 5.43.

    Eb

    Eeb

    RZ

    E

    C

    i

    ov

    )R(rZ

    Ee

    C

    i

    ov

    b

    C

    i

    ov

    R

    R

    V

    VA

    Rr

    R

    V

    VA

    Z

    R

    V

    VA

    bB

    B

    i

    oi

    ZR

    R

    I

    IA

    C

    ivi

    R

    ZAA

    Fi . 5.46 Exam le 5.6.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    16/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud

    Fig. 5.57 Common-base configuration.

    Fig. 5.58 Substituting the re equivalent circuit into the ac equivalent network of Fig. 5.57.

    e

    C

    e

    C

    i

    ov

    r

    R

    r

    R

    V

    VA

    1I

    IAi

    oi

    Fig. 5.59 Example 5.11.

  • 8/7/2019 Fundametals of Analog Electronics_part II

    17/17

    Module: Fundamentals of Analog Electronics Module Number: ENRE213

    Electronic Devices and Circuit Theory, 9th ed., Boylestad and Nashelsky

    Lecturer: Dr. Omar Daoud