Top Banner

of 50

Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

Apr 03, 2018

Download

Documents

recsco2
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    1/50

    FundamentalsofGasSepara2onandCOCaptureTechnology

    DevelopmentsinMembraneSepara2on

    JenniferWilcox

    DepartmentofEnergyResourcesEngineering

    RECSSummerSchoolJune19th,2013

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    2/50

    CleanEnergyConversionsTeam-013

    BryceAnzelmo(PhD) PanithitaRochana(PhD) EkinOzdogan(PhD) JiajunHe(PhD) KyoungjinLee(PhD) AbbyKirchofer(PhD) AnaSuarezNegreira(PhD,ChemE) MengyaoYuan(PhD)

    BeibeiWang(MS) TaoNarakornpijit(MS) JeremyHoffman(UG,Chem)RezaHaghpanah(Post-doc) Dong-HeeLim(Post-doc)

    MahnazFirouzi(Post-doc) DawnGeatches(Post-doc) ErikRupp(ResearchAssistant)

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    3/50

    Agenda

    ScaleofEmissionsWorkofCarbonCapture

    N2-SelecveMembranes

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    4/50

    ToPreventCWarming

    Between2000-2050ifcumulaveemissionsarelessthan: 1,000Gt25%probabilityglobal

    warmingbeyond2C

    1,440Gt50%probabilityglobalwarmingbeyond2C

    Wherewereprojectedtogo(BAU):

    Assumingannualincreases: Coal0.3% Oil0.9% NaturalGas2.3%

    ~29GtCO2emiedin2009 ~44GtCO

    2projectedin2050

    1790cum.GtCO2in2050!

    BAU

    009 050

    Ref:Allenetal.,Nature,2009

    Ref:BPStascalRev.ofWorldEnergy,2012

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    5/50

    ExpandingtheImpactofCCS

    BAU-1790GtCO

    1000GtCO5%probabilityofC

    1440GtCO50%probabilityofC

    Scenario AvoidedCum.GtCO

    ReplaceCoalw/NG 1512

    90%Capture(PointSourceElectricSector) 1288

    90%Capture(PointSourceElectricSector)+50%

    Transport(on-boardcapture;EV;DAC)

    1083

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    6/50

    Apprecia2ngtheScale USpopulaon~311,591,000 CHpopulaon-~1,344,130,000 Annualemissionspercapita:

    US~17.5tonsCO2 CH~5tonsCO2

    FlightfromSFtoBirmingham(viaHouston)RT~0.7tonsCO2

    DriveHondaAccord~1.5tonsCO2 DriveHondaCivicHybrid~0.74tonsCO2 Dependingonsorbentloadingand

    performance(cycling)

    17.5tonstotal150tonsmaterial

    JusttheCOperpersoninUS!

    Justthesorbent+COperpersoninUS!

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    7/50

    CaptureandRegenera2onareBothKey

    CapturingCO2isonlythestory MUSTregenerate Oponsforusage:

    Chemicalfeedstock? Challengemarketissmall

    Enhancedoilrecovery(akaEOR) Seemstobebestnear-termopon

    Storage Challengesincludepublicperceponandovercomingrisks

    ofpotenalseismicevents

    AmineScrubbing-CurrentState-of-the-Art

    TechnologyforPoint-Source

    CaptureofCO2

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    8/50

    Agenda

    ScaleofEmissionsWorkofCarbonCapture

    N2-SelecveMembranes

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    9/50

    MinimumWorkforSepara2oncombinedfirstandsecondlaws

    Wmin =RT nBCO2 ln(yB

    CO2 ) + nBB CO2 ln(yB

    B CO2 )[ ] +RT nCCO2 ln(yC

    CO2 ) + nCCCO2 ln(yC

    CCO2 )[ ]RT nA

    CO2 ln(yACO2 ) + nA

    A CO2 ln(yAA CO2 )[ ]

    Wilcox,CarbonCapture,Springer,2012

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    10/50

    MinimumWorkforSepara2on

    APSReport,FeasibilityofDACwithChemicals,2011

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    11/50

    1

    3

    5

    7

    9

    11

    13

    15

    17

    19

    0 0.05 0.1 0.15 0. 0.5 0.3 0.35 0.4

    Minimum

    Work

    (kJ/

    mo

    lCO

    2Cap

    ture

    d)

    COConcentra2on

    50%capture;80%purity75%capture;80%purity90%capture;80%purity50%capture;95%purity75%capture;95%purity90%capture;95%purity

    50%capture;99%purity75%capture;99%purity90%capture;99%purity

    MinimumWork

    CoalGasifica2on1-

    4kJ/molCO

    NaturalGasCombus2on6-9kJ/molCO

    CoalCombus2on5-7kJ/molCO

    DirectAirCapture191kJ/

    molCO

    DACisalways~20kJ/molCO2,regardlessof%captureand

    purity

    Reason:capturinglessofagiventotalgas

    Addionalworkrequiredduetodensitychangesw/mixturesof

    CO2andN2

    95%CO2+5%N2:681kg/m3 80%CO2+20%N2:343kg/m3 ~0.5kJ/molCO2addional

    compressionenergy!

    Ref:Wilcox,CarbonCapture,2012

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    12/50

    SherwoodPlotforFlueGasScrubbing

    CalculaonscarriedoutusingIECM,allcasesassume500-MWplantburningAppalachianbituminous,NGCC(477-MW)

    O&M+annualizedcapitalcostsareincludedinthecostesmates

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    13/50

    CostandScale

    Process Price[$/kg]

    Concentra2on[molefrac2on]

    Emissions[kg/day]

    Cost[1000s$/day]

    CO2-PCC 0.045 0.121 8.59x106 392

    CO2-NGCC 0.059 0.0373 3.01x106 178

    SOx(MS) 0.66 0.00127 8.94x104 59.6

    SOx(LS) 2.1 0.000399(399ppm) 2.32x104 50.4NOx 1.1 0.000387(387ppm) 1.11x10

    4 12.5

    Hg 22000 5x10-9(ppb) 0.951 21.6

    Valuesmaychangebaseduponcoal-typeburnedandscrubbingmethods;1ENLighoot,MCMCockrem,WhatAreDilute

    Soluons,Sep.Sci.Technol.,(),165(1987)

    the recovery of potentially valuable solutes from dilute solution is dominated by the costsof processing large masses of unwanted materials.1 -Edwin Lightfoot

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    14/50

    nd-LawEfficiencyDropswithConcentra2on

    House,K.Z.etal.,Proc.Nat.Acad.Sci.,108(51),20428-20433(2011)

    2nd

    =

    Wmin

    Wreal

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    15/50

    BenefitsofMembraneProcesses

    Focusisonthemoreconcentratedgas,i.e.,N2 DAC,NaturalGas,Coalapplicaons

    Basedprimarilyuponphysicalseparaonprocesses,withCO2maintainingitslinearformthroughoutseparaon

    Waterdoesnotneedtobeunnecessarilyheated;mostsolventsareaqueous-basedw/thechemical~30%

    Regeneraonisnotrequiredinmembraneseparaon Ingeneral,thefootprintissmaller

    MembraneProcess:

    Majorchallengew/CO2-selecvepolymers:lackofdrivingforceinfluegasw/CO2concentraon~12%-considerN2-selecvemembraneinstead

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    16/50

    Agenda

    ScaleofEmissionsWorkofCarbonCapture

    N-Selec2veMembranes

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    17/50

    N-Selec2veMembraneforCarbonCapture

    Flux:

    Q=permeability=DiffusivitySolubility

    L=membranethickness

    InspiraonARPA-Ebrainstormsessionin2010 CaptureCO2onthehigh-pressuresideofthemembranemayleadtocostsavingsin

    termsofcompressionenergy Canwedoit?Startw/aliteraturereview

    Feed

    Residue(retentate)

    Permeate

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    18/50

    NandODiffusivityinVanadiumPermeability=DiffusivitySolubility

    1Keinonenetal.Appl.Phys.A34,39(1984);2Nakajimaetal.PhilosophicalMagazineA67,557(1993).3Holleck,J.Phys.Chem.74,503(1970);4FukaiandSugimoto,Adv.InPhys.34,263(1985)

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    19/50

    NandOSolubilityinVanadium

    1Henry,J.L.,etal.J.Less-CommonMetals5,39(1971);2Henry,J.L.,etal.J.Less-CommonMetals1,115(1970);3Tanaka,S.;Kimura,H.Trans.JIM0(1979).

    Hydrogen solubility in vanadium3Decreasing()

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    20/50

    Theory,Experiments,andOp2miza2on-theteam-

    TheoryandExperiments:

    Opmizaon:

    PhDstudents:NiRochana,EkinOzdogan,

    KyoungjinLee

    PhDstudents:MengyaoYuan,TaoNarakornpijit

    Post-doc:RezaHaghpanah

    2 l li 2 f S l 2 b

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    21/50

    N

    Mem

    brane

    Step1

    Adsorp2on StepDissocia2onN N

    NStep3

    BulkDiffusion

    NNN

    H NH3

    Poten2alApplica2ons:

    CarboncaptureAmmoniasynthesis

    Methane/N2mixtures Airseparaon(selecveO2)(IGCC,oxy-combuson)

    Goals: Use DFT to provide insight into tuning materials electronic structure for

    enhancednitrogenreacvity

    PerformpermeaontestsontheGroupVmaterials

    Poten2alApplica2onsforN-Selec2veMembranes

    PhDstudents:NiRochana,EkinOzdogan,

    KyoungjinLee

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    22/50

    NDissocia2onisDifficult!

    Bonddissociaonenergies N~225kcal/mol;944kJ/mol;9.7eV O~119kcal/mol;498kJ/mol;5.1eV H~104kcal/mol;435kJ/mol;4.4eV

    CommonN2dissociaoncatalysts(H-B,ammoniasynthesis) Fe,Ru

    d-bandcentermodel(HammerandNrskov)providesinsight

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    23/50

    Thedensityofstates(DOS)ofasystemdescribesthenumberofstatesat

    eachenergylevelthatareavailabletobeoccupied.

    DensityofStates

    unoccupiedoccupied

    Fermi level

    Transionmetalreacvityisdisnguishedbyitsd-states,witheach

    transionmetalhavingacharacteriscd-bandcenter

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    24/50

    d-bandCenterModel

    Whenbondingandan-bondingstatesareformed,bondstrengthdependsontherelaveoccupancyofstates Bondingstatesfilledstrongbonds;an-bondingstatesfilledweakening

    d-bandcenterincreasesfromRtoLofperiodictable(transionmetals) bothbondingandan-bondingstatesarehigherfromRtoL Strengthofadsorbate-metalbondincreases

    WhyuseFeandRuforammoniasynthesis?WhynotGroupV? answervolcano

    HammerandNrskov,Nature376238(1995);HammerandNrskov,Adv.Catal.4571-129(2000)

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    25/50

    MaterialScreeningandDFT

    1.Surfaceac2vity N2adsorponmechanism N2dissociaonpathway Comparisontoothertypical

    ammoniasynthesiscatalysts

    .SolubilityandDiffusivity AtomicNbinding

    mechanism

    ComparisontoatomicHbinding

    3.Effectofalloying

    Ru Effectonbinding Implicaonsfor

    permeability

    Computa2onalMethodology

    VASP(ViennaabinioSimulaonPackage)

    Densityfunconaltheory(DFT)

    Projector-augmentedwave(PAW)potenal

    GGAPBEBulk vanadium Lattice constant

    []

    This study 2.98

    Previous calculation 2.93-2.941

    3.0212

    Experiment 3.0243

    1MehlandPapaconstantopoulos,Phys.Rev.B54,4519(1996);2Vitosetal.,J.,Surf.Sci.411,186(1998);3OnlineCRCHandbookofChemistryandPhysics,91stedion,2010-2011

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    26/50

    MolecularNAdsorp2onEnergy

    1Grunze,etal.,Appl.Phys.A44,19(1987);2Bozso,etal.J.Catal.49,18(1977);Ertletal.,Surf.Sci.114,515(1982);3Sheyetal.,J.Phys.Chem.C11,17768(2008)

    strength of N2-metalbond increases

    Eads (eV/molecule) = E(surf+N2) [E(surf)+E(N2)]n(N2)V(110)

    1-top2-short-bridge (SB)3-long-bridge (LB)4-three-fold (TF)

    V(111)

    1-top, 2-hcp3-fcc, 4-bridge

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    27/50

    Absorp2onofAtomicNinBulkV

    Intersal

    binding

    Vanadium:bccstructure 1)O-site 2)T-site

    Configura2on Conc.(at.%)Ebinding(eV/N)

    V16N(O) 6.25 -1.99

    V16N(T) 6.25 -0.90

    Ebinding (eV/atom) = E(bulk + n N atoms) [ E(bulk) + 0.5n*E(N2) ]

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    28/50

    Absorp2onofTwoNAtomsinBulkV

    No. Configura2on Conc.(at.%) N-Ndist.()Ebinding(eV/N)

    1 V16N2(T,T) 12.5 2.991 -1.55

    2 V16N2(O,O) 12.5 2.499 -2.10

    3 V16N2(O,O) 12.5 2.800 -2.70

    4 V16N2(O,O) 12.5 4.240 -2.78

    1 32 4

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    29/50

    BaderChargeAnalysisonV16N

    -1.545 -1.545

    +0.011 +0.016

    +0.008

    +0.008+0.008

    +0.008

    +0.016

    +0.016

    +0.381

    +0.011

    +0.011

    +0.011

    +0.011

    +0.011

    +0.011

    +0.381

    +0.381+0.381

    +0.016

    +0.016

    +0.381

    +0.381

    +0.378+0.378

    +0.379 +0.380

    +0.001

    +0.378

    +0.376 +0.376 -0.00

    +0.016+0.011

    +0.006

    +0.005

    AsVdonatesitsd-electronstop-stateofN,chargeis

    accumulatedonN

    Chargeinterac2oncouldexplainthestrongbindingofN

    inV,aswellastherepulsive

    interaconbetweenNatoms

    Strongbindingcouldenhancethesolubility.However,too

    strongbindingcanleadtoa

    slowdiffusionprocess

    Pauling-ScaleElectronegavies:N=3.04;V=1.63;Ru=2.2

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    30/50

    EffectofRuAddi2on

    Ru Ru

    +2.836

    -0.09

    -0.254 -0.257

    -0.255

    -0.141

    -0.255

    Pure Vanadium Distance (N-Ru)= 0.5 Distance (N-Ru)= 0.71

    +2.710

    -0.292-0.292

    -0.292

    -0.374

    -0.292+3.075

    -0.235

    -0.174

    -0.372

    -0.372

    -0.214

    +3.347 +3.075

    Lattice Constant= 3.01

    Eb= -2.132 eVLattice Expansion= 1.01%

    Lattice Constant= 3.02

    Eb= -0.889 eVLattice Expansion= 1.34%

    Lattice Constant= 3.01

    Eb= -1.48 eVLattice Expansion= 1.01%

    HbindinginV:O-site=-0.076eV;T-site=-0.280eV

    Aboud and Wilcox, J. Phys. Chem. C, 114(24) 10978-10985 (2010);Pauling-Scale Electronegativities: N = 3.04; V = 1.63; Ru = 2.2

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    31/50

    FluxMeasurements

    Test Temperatures:500C -1000C

    MembraneFoils

    (GroupVmetals)DiffusionBarrier

    (uniformlyrigidizedsheetof

    aluminafiberandbinder)

    PorousSupport

    (HastelloyX)

    Inside of Membrane Holder

    SweepGas

    Permeate

    Retentate

    FeedGas

    Test Pressures:20 90 psi

    M b D f t C 2

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    32/50

    Fluxmeasurements: Argongasusedtocorrectforpinholeandgeneralleaksinthemembranesystem Eachpurefoilistestedatatemperaturerangeof500C-1000C.Ateachtemperature,

    feedpressureischangedbetween23.4-93.4psig.RetentatePressureiskeptat3.4psig

    UseKnudsendiffusionforcorrecons:

    MembraneDefectCorrec2ons

    Nitrogen Permeability measurement

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    33/50

    NitrogenPermeabilitymeasurement

    Nitrogenpermeabilitythroughvanadiumishigherbytwoordersofmagnitudethanitspermeabilitythroughniobium.

    ComparetothehydrogenpermeabilitythroughPdmembrane(1.610-8mole/msPa0.5),enhancingthenitrogenpermeabilitybyalloyingorother

    techniquesisnecessary.

    Vhasala{ceconstantof2.98;Nbhasala{ceconstantof...

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    34/50

    COPermeabilitymeasurement

    CO2permeabilityislowerthannitrogenpermeabilitybyfiveordersofmagnitudeinvanadium.CO2isexpectedtodiffusethroughthedefectsin

    themetals,whichishighlylimited.

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    35/50

    FluxMeasurementsw/GasMixturesNiobium(P=90psi)

    0.00E+00

    5.00E-07

    1.00E-06

    1.50E-06

    2.00E-06

    2.50E-06

    0.00E+00

    5.00E-05

    1.00E-04

    1.50E-04

    2.00E-04

    2.50E-04

    3.00E-04

    0.001 0.0011 0.0012 0.0013 0.0014

    CO2

    Flux((mole/ms)

    N2

    Flux(mole/ms)

    1/T (K-1)

    4 mol% CO2-96 mol% N2

    N2 CO2

    0.00E+00

    1.00E-06

    2.00E-06

    3.00E-06

    4.00E-06

    5.00E-06

    6.00E-06

    7.00E-06

    8.00E-06

    0.00E+00

    5.00E-05

    1.00E-04

    1.50E-04

    2.00E-04

    2.50E-04

    0.001 0.0011 0.0012 0.0013 0.0014

    CO2

    Flux((mole/ms)

    N2

    Flux(mole/ms)

    1/T (K-1)

    15 mol% CO2-85 mol % N2

    N2 CO2

    Naturalgasfluegas Coalfluegas

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    36/50

    MembraneSurfaceAerPermea2on

    ScanningElectronMicroscopy(SEM)onVmembranes

    ExposuretohighTinducesstructuralchangesassociatedwithdefectformaon Gasexposureenvironmentsaffectcrystallinestructures

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    37/50

    MembraneSurfaceAerPermea2on

    X-rayPhotoelectronSpectroscopy(XPS)

    Surfacenitrideisconfirmedbythetailofvanadium2pspectra

    O1s

    V2p

    Nitride

    V2p

    V2p

    Nitride

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    38/50

    MembraneBulkAerPermea2on

    X-rayDiffrac2on(XRD)onVmembranes

    !

    Bulkvanadiumnitridephasesformeda}erexposuretoN 2athightemperature

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    39/50

    ModelingandOp2miza2on Scopeofresearch

    Processmodeling:Modelingofpost-combusoncapturefromcoal-firedpowerplantsusingN2-selecvemembranesandtheircombinaonswithCO2-selecvemembrane

    Bi-objec2veop2miza2on:AssessmentoftheengineeringfeasibilityofusingN2-selecvemembranesinlarge-scalecaptureapplicaonsby

    simultaneouslyminimizingenergyandmembranesurfacearearequirements,twoimportantindicatorsofcapturecosts

    SixmembraneconfiguraonshavebeenmodeledinMATLAB;Bi-objecveopmizaonwasperformedbythebuilt-ingenecalgorithminMATLAB

    PhDstudents:MengyaoYuan,TaoNarakornpijit

    Post-doc:RezaHaghpanah

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    40/50

    MembraneConfigura2ons:N-Selec2veMembranes

    Feed Retentate1

    Permeate1

    Permeate

    Retentate

    (Product)N

    N

    Config.:2-stageN2-

    selecvemembranes,with

    pressurizaonon1st-stage

    feed

    Config.3:2-stageN2-selecvemembranes,nopressurizaonon1st-stage

    feed

    FeedRetentate1

    Permeate1

    Permeate

    N

    N

    Retentate(Product)

    Config.1:Single-stageN2

    -

    selecvemembraneFeedRetentate

    (Product)Permeate N

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    41/50

    HybridConfigura2ons:N-+CO-Selec2veMembranesConfig.4:1st-stageN2-selecvemembranewithfeed

    pressurizaon,2nd-stageCO2-

    selecvemembrane

    Retentate1

    Permeate1 Permeate

    (Product)

    RetentateN

    CO

    Feed

    Config.5:1st-stageN2-selecvemembranewithnofeedpressurizaon,2nd-stageCO2-

    selecvemembrane

    FeedRetentate1

    Permeate1Permeate(Product)

    RetentateN

    CO

    Config.6:1st-stageCO2-selecvemembranewithfeed

    pressurizaon,2nd-stageN2-

    selecvemembrane

    Retentate1

    Permeate1Permeate

    Retentate(Product)CO

    N

    Feed

    Pareto Curves of N Selec2ve Membrane

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    42/50

    ParetoCurvesofN-Selec2veMembraneConfigura2ons(100%Capture,95%Purity)

    0%

    20%

    40%

    60%

    80%

    100%

    120%

    0

    1

    2

    3

    4

    5

    6

    0 50,000100,000150,000200,000250,000300,000

    Membranesurfacearea(m)

    Config.1

    Config.2

    Config.3

    En

    ergyuse(GJ/tC

    O2

    captured)

    Energ

    ypenalty

    CO-selec2vemembranes

    Absorp2on

    Pareto Curves of Hybrid Membrane Configura2ons

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    43/50

    ParetoCurvesofHybridMembraneConfigura2ons(90%Capture,95%Purity)

    0%

    20%

    40%

    60%

    80%

    100%

    0

    1

    2

    3

    4

    5

    6

    0 50,000100,000150,000200,000250,000300,000

    Membranesurfacearea(m)

    Config.4

    Config.5

    Config.6

    Energypenalty

    En

    ergyuse(GJ/tC

    O2

    captured)

    CO-selec2vemembranes

    Absorp2on

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    44/50

    FootprintComparison

    500MWplantemits11,000tonsCO2/dayandassumecapture90%(10,000tons)

    Plantsizeis0.15km2 CurrentSOAaminescrubbingtocaptureis

    0.02km2or13%oftheplantslandarea

    Membranesurfacearea 250,000m2=0.025km2 Butitstypicallyshell-in-tubeconfiguraon Surfaceareawilllikelybelessthanthatofatradionalaminescrubbingsystem

    0

    4

    6

    8

    10

    0 1 3 4 5 6 7 8 9 10

    0

    4

    6

    8

    10

    0 1 3 4 5 6 7 8 9 10

    0

    4

    6

    8

    10

    0 1 3 4 5 6 7 8 9 10

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    45/50

    InSummary ProofofConcept:nitrogenpermeatesGroupVmetals,selecvelyoverCO2

    viaasoluon-diffusionmechanism

    FromDFT,atomicNdrawssignificantchargefromVleadingtostabilizaonandbondinginthela{ce

    AllyingwithRusignificantlyreducesatomicNstabilityinV N

    2-selecvemembranesarelikelytohaveasmallerfootprintthanCO

    2-

    selecvemembranes.Thefinalsize,however,alsodependsonthesurfaceareato-volumera2osofthemembranemodules.

    Energyinefficiencycomesinpartfromhea2ngandcoolinguse,whichisdictatedbythehighoperangtemperaturesrequiredbythemembrane

    materials.

    N2-selecvemembraneshaveshowngreatpotenalasfeedCOenrichersforCO2-selecvemembranes.

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    46/50

    NextSteps

    ConnueDFTcalculaonstopredictalloysforenhancedN2separaon WorkwithSwRItospuerdepositalloysofVRuandNbRuonporous

    stainlesssteelsupports

    WorkwithDrStevePaglieri(TDA)toassistintubularreactordesigntomakematerialstesngeasier

    MeasureN2andCO2fluxesofalloysandcomparetopure Carryoutopmizaoncalculaonsonnaturalgassystems;consider

    applyingmembranebeforetheexpansioninthegasturbine

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    47/50

    Acknowledgements

    Funding:

    Experiments:NSFEager,CatalysisDivision;EPAP3(high-Tfurnace);ArmyResearchOffice

    DFT:NSFTeragrid,UTAusn

    HelpfulDiscussions: DrStevePaglieri,TDAResearch

    NAMS,013

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    48/50

    Addi2onalInforma2on:

    FromSpringersite:

    hp://www.springer.com/chemistry/book/

    978-1-4614-2214-3

    CleanEnergyConversionsWebsite:

    hp://cec-lab.stanford.edu/

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    49/50

    GigatonChallengeThinkOutsidetheBox!dontworry..YoullsTllgraduateandfindajob

    EkinOzdogan,PhD013Shell,ResearchEngineer,ProcessEvaluaons

    Houston,TX

    NiRochana,PhD013PTT,ResearchEngineer,BusinessDevelopment

    Bangkok,Thailand

  • 7/28/2019 Fundamentals of Gas Separations and CO2 Capture Technology / Developments in Membrane Separation

    50/50

    Ques2ons?