Top Banner
Fundamentals Of Electricity Fundamentals Of Electricity Simple DC Series Circuit, R t = R 1 +R 2 +R 3 Simple DC Parallel Circuit, R t = (R 1 .R 2 .R 3 ) /(R 2 .R 1 +R 3 .R 2 +R 1 .R 3 ) 9/23/2008 10 Electrical Engineering Fundamentals for Non-EEs; © B. Rauf
33

Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Mar 11, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Simple DC Series Circuit,

Rt = R1+R2+R3

Simple DC Parallel Circuit,

Rt = (R1.R2.R3 ) /(R2.R1+R3.R2+R1 .R3)

9/23/200810

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 2: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Simple AC Series Circuit,

9/23/2008Electrical Engineering Fundamentals for Non-EEs; © B. Rauf11

Simple AC Parallel Circuit,

Page 3: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

9/23/2008Electrical Engineering Fundamentals for Non-EEs; © B. Rauf12

Fundamentals Of ElectricityFundamentals Of Electricity

Three Phase (AC) Transformer Configurations

Note:

a = Turns Ratio = Np/Ns

Page 4: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Impedance :Definition : Impedance is the current resisting and impeding characteristic of load or conductor in an AC Circuit.

Symbol for Impedance: Z Z = R + jXl - jXcWhere, jXl = Zl and, -jXc = Zc

Unit for Impedance: Ohms or Ωs.

9/23/200813

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 5: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Ohms Law:Mathematical Statement of the Ohm’s Law:V = I R for DC circuitsV = I Z for AC CircuitsNote: BOLD letters, in general, represent

Vectoral quantities

9/23/200814

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 6: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

9/23/2008Electrical Engineering Fundamentals for Non-EEs; © B. Rauf15

Impedance Impedance Calculation:Calculation:

Page 7: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Power :Definition: Power is defined as the capacity of a system to perform work or Rate of work performed by a system.Symbols and Types of Power:Pdc= V.I , in watts. Note: Pdc= PrealPapparent = S = Apparent Power (kVA) or Total AC

PowerPreal = P = Real Power Comp. of Apparent Power, in kWPreactive = Q = Reactive Comp. of App. Power in kVAR Pappent = (Preal)2 + (Preactive)2 orS= (P)2 +(Q)2

Magnitude of Total (3 ∅ ) Power = S= √3. VL.IL

9/23/2008Electrical Engineering Fundamentals for Non-EEs; © B. Rauf16

Page 8: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Power Factor :Definition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent Power (kVA). It is also defined as the quantity cos(θ - φ).

PF = P/S orPF = cos(θ - φ),

where θ is the angle of voltage V, where V = VRMS ∠ θφ is the angle of current i = I RMS ∠ φ

Note: Detailed discussion on the topic of Power Factor is covered under the Power Factor segment of this seminar.

9/23/200817

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 9: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Voltage Regulation:Definition: Real voltage sources are unable

to hold the voltage constant as they assume a significant amount of load (Resistance or Impedance). This results in the difference between Vno load and Vfull load.The formula for Voltage Regulation is as

follows:Voltage Reg. = (Vno load - Vfull load)/ Vfull load x 100%

9/23/200818

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 10: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Service Factor of a Motor:

Definition: Service factor of a motor is the ratio of safe to standard (nameplate) loads. Service factor is expressed in decimal. The formula for Service Factor is as follows:Service Factor = Safe Load / Nameplate Load

9/23/200819

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 11: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Classifications of Motors:Motor categorization by NEMA, National Electrical Manufacturers Association:

Speed:Constant SpeedAdjustable SpeedMultispeedVarying Speed

Service Classification: General DefiniteSpecial PurposeVarying Speed

9/23/200820

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 12: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Classifications of Motors, contd.:

Motor Class is determined by the maximum allowable operating temperature of the motor, which is dependant on the type/grade of insulation used in the motor.

Class A: 105° CClass B: 130° CClass F: 155° CClass H: 180° C

9/23/200821

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 13: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Kirchhoff’s Voltage Law (KVL):Algebraic sum of voltage drops around

any closed path, within a circuit, is equal to the sum of voltages presented by all of the voltage sources. The mathematical representation of KVL is as follows:Σ VDrops = Σ VSource

9/23/200822

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 14: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Kirchhoff’s Current Law (KCL):

Total current flowing into a node is equal to the total current that flows out of the node. The mathematical representation of KCL is as follows:

Σ iin = Σ iout

9/23/200823

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 15: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Motor Speed Calculation:

Given: Number of Poles = P = 4Frequency of AC Power Supply to the Motor, in Hertz = f = 60

HzSpeed, in RPM = S = ?

– Formula: S x P = 120 x f

• S = (120 x f ) / P• S = (120 x 60) / 4 = 1800 RPM

9/23/200824

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 16: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Motor Slip: Slip is usually expressed in percent and can be computed as follows:

Percent slip = (Synchronous speed - Actual speed ) x 100Synchronous Speed

Induction motors are made with slip ranging from less than 5% up to 20%. A motor with a slip of 5% or less is known as a normal-slip motor. A normal-slip motor is sometimes referred to as a 'constant speed' motor because the speed changes very little from no-load to full-load conditions. A common four-pole motor with a synchronous speed of 1,800 rpm may have a no-load speed of 1,795 rpm and a full-load speed of 1,750 rpm. The rate-of-change of slip is approximately linear from 10% to 110% load, when all other factors such as temperature and voltage are held constant. Motors with slip over 5% are used for hard to start applications.

The direction of rotation of a polyphase ac induction motor depends on the connection of the stator leads to the power lines. Interchanging any two input leads reverses rotation.

9/23/2008Electrical Engineering Fundamentals for Non-EEs; © B. Rauf25

Page 17: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Motor Torque, Power and Horsepower:

Torque is equivalent to the amount of work performed. Torque can be considered as turning effort. For example, suppose a wheel with a crank arm one-foot long takes a force of one pound to turn at steady rate. The torque required would be one pound times one foot or one foot-pound.

Horsepower, i .e. Power, is defined as the rate at which work is performed or rate at which torque is produced.

In the wheel cranking example above, if one were to crank the wheel twice as fast, the torque remains the same but the power and horsepower delivered would double, regardless of how fast the crank is turned, as long as the crank is turned at a steady speed.

9/23/200826

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 18: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Motor Torque and Horsepower, contd.:

Power, Horsepower and Torque Relationship:

Torque(ft-lbf) = 5250 x P (horsepower)Speed (rpm)

Torque(N-m) = 9549 x P (kW)

Speed (rpm)

9/23/200827

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 19: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of Electricity in Industrial and Commercial EnvironFundamentals Of Electricity in Industrial and Commercial Environmentment

Motor Power – Line Current Calculation:

Motor Nameplate Information:Power rating, in HP (Horse Power) = P = 10 HPVoltage Rating = 480 VACNo. of Phases = 3; also stated as 3 ∅Power Factor = PF = 0.8Efficiency = Eff. = 0.9Magnitude of Line Current = FLA, Full Load Current = I = I = ?Note: 1 HP = 746 Watts = 746 W = 0.746 kW

Formula: I = Power in Watts / PF / Eff./ (√3 x VL)• I = 10HP x 746 W/HP/0.8/0.9/(√3 x480VAC)

• I = 12.46 Amps

9/23/200828

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 20: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Miscellaneous:Demand: This term means the highest average power (kW) in a given interval, or demand interval. Electric utilities charge commercial and industrial customers for the peak demand set each month. Peak demand: This is the maximum demand used in any demand interval for a given month. Load factor: The load factor is the ratio of average power to peak demand. Utility customers are sometimes penalized for low load factor that can occur when large amounts of power are used in short periods of time, instead of at a steady rate for long periods of time.

9/23/200829

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 21: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

ElectronicsElectronics

Semiconductor Diode:

9/23/200830

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 22: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

ElectronicsElectronics

Outputs From Simple Diode Circuits:

9/23/200831

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 23: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

9/23/2008Electrical Engineering Fundamentals for Non-EEs; © B. Rauf32

ElectronicsElectronics

Special Types of Diodes:

Outputs From Simple Diode Circuits:

Page 24: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

ElectronicsElectronics

Bipolar Junction Transistor Operating Regions

Bipolar Junction Transistors:

9/23/200833

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 25: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

StandardsStandards

NEMA: National Electrical Manufacturers Association; www.nema.org– NEMA, created in the fall of 1926 by the merger of the Electric Power

Club and the Associated Manufacturers of Electrical Supplies, provides a forum for the standardization of electrical equipment, enabling consumers to select from a range of safe, effective, and compatible electrical products.

ANSI: American National Standards Institute; www.ansi.org– The American National Standards Institute (ANSI) is a private,

non-profit organization that administers and coordinates the U.S. voluntary standardization and conformity assessment system

IEC: International Electrotechnical Commission. – IEC is the authoritative worldwide body responsible for

developing consensus global standards in the electrotechnicalfield

9/23/200834

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 26: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

StandardsStandards

IEEE: Institute of Electrical and Electronic Engineers; www.ieee.org– The IEEE is a non-profit, technical professional association

for Electrical and Electronics Engineers.

9/23/200835

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 27: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Power Distribution SystemsPower Distribution Systems

Power Distribution Systems Consist of:MCC or Motor Control CentersLoop SwitchesTransformersVoltage RegulatorsCapacitor BanksCircuit Breakers– OCB’s, Oil Circuit Breakers– Air Circuit Breakers

Disconnect SwitchesFusesStarters and Combination Starters Power Monitoring and Control Systems

9/23/200836

Electrical Engineering Fundamentals for Non-EEs; © B. Rauf

Page 28: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Power Factor CorrectionPower Factor Correction

Bobby Rauf ©

9/23/20081

Electrical Engineering Fundamentals for Non-EE's; © B. Rauf

Page 29: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Topics Topics

Power Factor, Definition, Concept and FormulasPower Factor Correction / Improvement ExampleAdditional Comments / Discussion on Power FactorPower Factor and Loss Calculation Example

9/23/20082

Electrical Engineering Fundamentals for Non-EE's; © B. Rauf

Page 30: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Power Factor, Definition, Concept and Formula:Definition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent Power (kVA). It is also defined as the quantity cos(θ - φ).

PF = P/S orPF = cos(θ - φ),

where θ is the angle of voltage V, where V = VRMS ∠ θφ is the angle of current i = I RMS ∠ φ% PF = (PF) x 100

9/23/20083

Electrical Engineering Fundamentals for Non-EE's; © B. Rauf

Page 31: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Power Factor, contd.:Leading Power Factor:

Power factor is said to be leading when, φthe angle of the current, exceeds θ, the angle of the voltage.In other words, (θ - φ) is negative.Impedance, Zc, due to pure capacitance reactance, Xc, has a negative angle. Or, Zc = Xc ∠ -90

Zc= Xc ∠ -90=-j Xc

I

Vθ - φ

9/23/20084

Electrical Engineering Fundamentals for Non-EE's; © B. Rauf

Page 32: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

9/23/20085

Electrical Engineering Fundamentals for Non-EE's; © B. Rauf

Power Factor, contd.:Lagging Power Factor:

Power factor is said to be lagging when, φ the angle of the current, is less than θ, the angle of the voltage.In other words, (θ - φ) is positive.Impedance, Zl, due to pure inductive reactance, Xl, has a positive angle. Or, Zl = Xl ∠ 90

In Inductive Circuits, add Capacitance, or Capacitive Reactance, Xc, to offset the Inductive Reactance, Xl, and to Increase the PF.

Zl = Xl ∠ +90=+j Xl

90 Deg.

θV

I

V

V

I

Pf Angle = θ - φ

Page 33: Fundamentals Of Electricity For Non-EE - Part 2.pdf · Fundamentals Of Electricity Power Factor : zDefinition: Power Factor is defined as the Ratio of Real Power (kW) to Apparent

Fundamentals Of ElectricityFundamentals Of Electricity

Power Factor, contd :

C = ( Q1 - Q2 )2 π f V2

Where, C = Capacitance (F) required to reduce the

Reactive or Imaginary Power from Q1 to Q2 Q1 = Initial, higher Reactive Power, in VARsQ2 = Improved, lower Reactive Power, in VARsV = Voltage, in Voltsf = Frequency, in Hz

9/23/20086

Electrical Engineering Fundamentals for Non-EE's; © B. Rauf