Top Banner
Fundamentals of Digital Signal Processing
26

Fundamentals of Digital Signal Processing

Feb 25, 2016

Download

Documents

Ninon

Fundamentals of Digital Signal Processing. Fourier Transform of continuous time signals. with t in sec and F in Hz (1/sec). Examples: . Discrete Time Fourier Transform of sampled signals. with f the digital frequency (no dimensions). Example:. since, using the Fourier Series,. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fundamentals of Digital Signal Processing

Fundamentals of Digital Signal Processing

Page 2: Fundamentals of Digital Signal Processing

Fourier Transform of continuous time signals

dtetxtxFTFX Ftj 2)()()(

dFeFXFXIFTtx Ftj 2)()()(

with t in sec and F in Hz (1/sec).

Examples:

0 0 0sinct

TFT rect T FT

02 0 FFeFT tFj

021

021

02cos FFeFFetFFT jj

Page 3: Fundamentals of Digital Signal Processing

Discrete Time Fourier Transform of sampled signals

n

fnjenxnxDTFTfX 2][][)(

21

21

2)()(][ dfefXfXIDTFTnx fnj

with f the digital frequency (no dimensions).

Example:

020( )j f n

k

DTFT e f f k

since, using the Fourier Series,2( ) j nt

k n

t k e

Page 4: Fundamentals of Digital Signal Processing

Property of DTFT

• f is the digital frequency and has no dimensions

• is periodic with period f = 1. )1()( fXfX

21

21 f

f11

2

12

1

)( fX

• we only define it on one period

f12

)( fX

12

Page 5: Fundamentals of Digital Signal Processing

tFjetx 02)( nj

ssF

F

enTxnx02)(][

ss TF /1

Sampled Complex Exponential: no aliasing

0F F

)(FX

f

( )X f

21

12

1. No Aliasing20

sFF

2sF

2

sF0f

sFFf 0

0 digital frequency

Page 6: Fundamentals of Digital Signal Processing

tFjetx 02)( nj

ssF

F

enTxnx02)(][

ss TF /1

Sampled Complex Exponential: aliasing

0FF

)(FX

f

( )X f

21

12

2. Aliasing 0 2sF

F

2sF

2

sF0f

0 00

s s

F Ff roundF F

digital frequency

Page 7: Fundamentals of Digital Signal Processing

tFjetx 02)( 02[ ] ( ) j f nsx n x nT e

ss TF /1

Mapping between Analog and Digital Frequency

ss FFround

FFf 00

0

Page 8: Fundamentals of Digital Signal Processing

Example

tjetx 10002)( kHzFs 3

Then:

• analog frequency

• FT:

• digital frequency

•DTFT: for

)1000()( FFX FT

HzF 10000

0 0 1 1 10 3 3 3s s

F FF Ff round round

31)( ffX DTFT 2

1|| f

Page 9: Fundamentals of Digital Signal Processing

Example

tjetx 20002)( kHzFs 3

Then:

• analog frequency

• FT:

• digital frequency

•DTFT: for

)2000()( FFX FT

HzF 20000

31)( ffX DTFT 2

1|| f

0 0 2 2 10 3 3 3s s

F FF Ff round round

Page 10: Fundamentals of Digital Signal Processing

Example

tjjtjj eeeettx 80001.02180001.0

21)1.08000cos()(

kHzFs 3

Then:

• analog frequencies

• FT:

• digital frequencies

•DTFT

)4000()4000()( 1.0211.0

21 FeFeFX jj

FT

0 14000 , 4000F Hz F Hz

21|| f 3

11.021

311.0

21)( fefefX jj

DTFT

4 4 4 10 3 3 3 31f round

4 4 4 11 3 3 3 3( 1)f round

Page 11: Fundamentals of Digital Signal Processing

Linear Time Invariant (LTI) Systems and z-Transform

][nx ][ny][nh

If the system is LTI we compute the output with the convolution:

m

mnxmhnxnhny ][][][*][][

If the impulse response has a finite duration, the system is called FIR (Finite Impulse Response):

][][...]1[]1[][]0[][ NnxNhnxhnxhny

Page 12: Fundamentals of Digital Signal Processing

n

nznxnxZzX ][][)(

Z-Transform

Facts:

)()()( zXzHzY

][nx ][ny)(zH

Frequency Response of a filter:

fjezzHfH 2)()(

Page 13: Fundamentals of Digital Signal Processing

Digital Filters

)(zH][nx ][ny

Ideal Low Pass Filter

f21

21

)( fH

f21

21

)( fH

Pf

Pf

passband

constant magnitude in passband…

… and linear phase

A

Page 14: Fundamentals of Digital Signal Processing

Impulse Response of Ideal LPF

P

P

f

f

fnjfnjideal dfAedfefHnh 222

1

21

)(][

Assume zero phase shift,

nfsincAfnh PPideal 22][

This has Infinite Impulse Response, non recursive and it is non-causal. Therefore it cannot be realized.

-50 -40 -30 -20 -10 0 10 20 30 40 50-0.05

0

0.05

0.1

0.15

0.2

n

fp=0.1

[ ]h n

n

0.11

PfA

Page 15: Fundamentals of Digital Signal Processing

Non Ideal Ideal LPF

The good news is that for the Ideal LPF0][lim

nhidealn

n

][nh

L L

nL2L

][nh

Page 16: Fundamentals of Digital Signal Processing

Frequency Response of the Non Ideal LPF

Pf STOPf

passstop stop

f

transition region

attenuation

ripple

|)(| fH11

11

2

LPF specified by:

• passband frequency

• passband ripple or

• stopband frequency

• stopband attenuation or

Pf

1 dB RP 1

111

10log20

STOPf

2 dB R 2S 10log20

Page 17: Fundamentals of Digital Signal Processing

Best Design tool for FIR Filters: the Equiripple algorithm (or Remez). It minimizes the maximum error between the frequency responses of the ideal and actual filter.

1f 2f 21

attenuation

ripple

|)(| fH11

11

2

1 2 3 3 1 2, 0, , , / , 1,1,0,0 , ,h firpm N f f f f w w

impulse response ][],...,0[ Nhhh

1f 2f 21

3 f0

Linear Interpolation

11/ w

2/ w

Page 18: Fundamentals of Digital Signal Processing

The total impulse response length N+1 depends on:

• transition region

• attenuation in the stopband

1f 2f

|)(| fH

2

12 fff

N

f 1~ 22)(log20 210

Example:

we want

Passband: 3kHz

Stopband: 3.5kHz

Attenuation: 60dB

Sampling Freq: 15 kHz

Then: from the specs

We determine the order the filter

301

0.150.35.3 f

8230~ 2260 N

Page 19: Fundamentals of Digital Signal Processing

Frequency response

0 0.1 0.2 0.3 0.4 0.5-100

-80

-60

-40

-20

0

20magnitude

digital frequency

dB

0 0.1 0.2 0.3 0.4 0.5-120

-100

-80

-60

-40

-20

0

20magnitude

digital frequency

dB

N=82

N=98

Page 20: Fundamentals of Digital Signal Processing

Example: Low Pass Filter

0 0.1 0.2 0.3 0.4 0.5-120

-100

-80

-60

-40

-20

0

20magnitude

digital frequency

dB

Passband f = 0.2

Stopband f = 0.25 with attenuation 40dB

Choose order N=40/(22*(0.25-0.20))=37

| ( ) |H f

f

Almost 40dB!!!

Page 21: Fundamentals of Digital Signal Processing

Example: Low Pass Filter

Passband f = 0.2

Stopband f = 0.25 with attenuation 40dB

Choose order N=40 > 37

| ( ) |H f

f0 0.1 0.2 0.3 0.4 0.5

-80

-70

-60

-50

-40

-30

-20

-10

0

10magnitude

digital frequency

dB

OK!!!

Page 22: Fundamentals of Digital Signal Processing

General FIR Filter of arbitrary Frequency Response

],...,,[],...,,,0[

10

21

M

M

HHHHffff

01f 2f 3f 1Mf 2

1Mf

0H1H

2H

3H 1MH MH

Weights for Error:

1w2w

2/)1( Mw

],...,,[ 2/)1(21 Mwwww

Then apply:

, / , ,Mh firpm N f f H w

… and always check frequency response if it is what you expect!

Page 23: Fundamentals of Digital Signal Processing

Example: ( ) 1/ sinc( )H f f for 0 0.2f

( ) 0H f 0.25 0.5f

0 0.2 0.25 0.5 f

fp=0:0.01:0.2; % vector of passband frequencies

fs=[0.25,0.5]; % stopband frequencies

M=[1./sinc(fp), 0, 0]; % desired magnitudesDf=0.25-0.2; % transition regionN=ceil(A/(22*Df)); % first guess of orderh=firpm(N, [ fp, fs]/0.5,M); % impulse response

40A dB

Page 24: Fundamentals of Digital Signal Processing

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

1.2

1.4magnitude

digital frequency

0 0.1 0.2 0.3 0.4 0.5-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

not very good here!

dB

37N

Page 25: Fundamentals of Digital Signal Processing

To improve it:

1. Increase order

2. Add weights

0 0.2 0.25 0.5 f

40A dB

1w 0.2w

w=[1*ones(1,length(fp)/2), 0.2*ones(1, length(fs)/2)];

h=firpm(N, [fp, fs]/0.5,M,w);

Page 26: Fundamentals of Digital Signal Processing

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

1.2

1.4magnitude

digital frequency

0 0.1 0.2 0.3 0.4 0.5-160

-140

-120

-100

-80

-60

-40

-20

0

20

100N dB