Top Banner
"This presentation does not contain any proprietary or confidential information." D. Assanis, W. Dahm, E. Gulari, H. Im, J. Ni, K. Powell, P. Savage, J. Schwank, L. Thompson, M. Wooldridge, and R. Yang University of Michigan College of Engineering May 25, 2004 Fuel Processors for PEM Fuel Cells
28

Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

Oct 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

D. Assanis, W. Dahm, E. Gulari, H. Im, J. Ni,

K. Powell, P. Savage, J. Schwank,

L. Thompson, M. Wooldridge, and R. Yang

University of MichiganCollege of Engineering

May 25, 2004

Fuel Processors forPEM Fuel Cells

Page 2: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Project Objectives

• Develop high performance, low-cost materials- High capacity sulfur adsorbents for liquid fuels- High activity and durable Autothermal Reforming

(ATR), Water Gas Shift (WGS) and PreferentialOxidation (PrOx) catalysts

• Design and demonstrate microreactors employinghigh performance catalysts

• Design and demonstrate microvaporizer/combustor• Design and demonstrate thermally integrated

microsystem-based fuel processors• Evaluate system cost

Page 3: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Total Budget(as of March, 2004)

Year 4$1,418,201

Year 3$1,950,000

Year 2$975,000

Year 1$975,000

22%41%

383k1,750kDue517k1,250kReceivedCost-ShareDoE

Page 4: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Fuel Processor (Fuel Cell)Technical Barriers

• Fuel Processor Startup/Transient Operation- Improved catalysts, sorbents and reactors- Thermal integration- Decreased unit operations

• Durability- Improved impurity tolerance- Improved resistance to coking and sintering

• Emissions and Environmental Issues• Hydrogen Purification/CO Cleanup

- Improved catalysts, sorbents and reactors• Fuel Processor System Integration and Efficiency• Cost

- Improved catalysts, sorbents and reactors- Integration and decreased unit operations

Page 5: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Fuel Processor (Fuel Cell)Technical Targets

10100

10100

10100

ppmppm

CO content in product stream Steady state Transient

<10<50<200ppbH2S content in product stream<0.1<0.5<10ppmNH3 content in product stream

1515secTransient response (10% to 90% power)<Tier 2Bin 5

<Tier 2Bin 5

<Tier 2Bin 5

Emissions

500040002000hoursDurability-40-30TBD°CSurvivability

1.0<0.5

2.0<1

TBD<10

minmin

Cold startup time to max power @ -20 °C ambient temperature @ +20 °C ambient temperature

102565$/kWeCost800700600W/kgSpecific power

807878%Energy efficiency800700700W/LPower density

20102005(2003)Target for Year:Current StatusUnitsCharacteristics

Page 6: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Approach

Project Director: Levi Thompson ([email protected])Co-PIs: Gulari, Savage, Schwank & Yang (ChE);

Assanis, Im, Ni & Wooldridge (ME);Dahm & Powell (Aero)

Subcontractors: Ricardo, Inc. (MI); Osram Sylvania;IMM (Germany); MesoFuel (NM)

+High Degreeof Integration

High PerformanceMaterials

+ Microsystems

Page 7: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Project Safety

• Preliminary Identification of SafetyVulnerabilities (e.g. FMEA, HAZOP)

• System Safety Assessment• Risk Mitigation Plan• Safety Performance Assessment• Communications Plan

Page 8: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

SystemDesign and Modeling

SystemFabrication

SystemEvaluation

Project Timeline

Design andModeling

Microchannel SystemDevelopment

Microcombustor/microvaporizerDemonstration

MicroreactorDemonstrations

DesulfurizerDemonstration

Phase I: Components

Phase II: 1 kW Processor

Phase III: 10 kW Processor

Page 9: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

SystemDesign and Modeling

SystemFabrication

SystemEvaluation

Design andModeling

Microchannel SystemDevelopment

Microcombustor/microvaporizerDemonstration

MicroreactorDemonstrations

DesulfurizerDemonstration

Phase I: Components

Phase II: 1 kW Processor

Phase III: 10 kW Processor

11/01-10-02 11/-2-10/-3 11/03-10/04 11/04-10/05

Phase IPhase II

Phase III

Project Timeline

Page 10: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Desulfurization of Fuels byAdsorption

-Complexation Mechanism:• Cu ions occupy faujasite 6-ring windows sites. Thiophene approaches site.• -donation of thiophene -electrons to the 4s orbital of Cu(I) or Ni(II)• d- * backdonation of electrons from 3d orbitals of Cu(I) or Ni(II) to * orbitals

of thiophene

Page 11: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Sulfur Adsorber Prototype

Yang et al., U.S. and foreign patents applied.

Sorbent Container

• Three Sorbent Layers- Activated Carbon (12.4 wt%)

- Activated Alumina (23 wt%)

- Ni(II)-Y (64.6 wt%)

• Gasoline Rate: 50 mL/hr

• Equivalent H2 Output:

2.8 moles/hr (100 W)

• Effluent Concentration:

~ 0.3 ppmw sulfur

• Operation Cycle: 9-10 hrs

Act

ivat

ed

Car

bon

Act

ivat

ed

Alu

min

a

Ni(II)-Zeolite

Page 12: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Microreactors

• Materials of Construction– Silicon Microfabrication

– Micromachined Metals

– Low Temperature Co-Fired Ceramics (LTCC)

• Metal Microreactors– 1st Generation (GEN1) Micro-reactor

• Design and Fabrication

– 2nd Generation (GEN2) Micro-reactor• Design Overview and Achievements

• Semi-solid Forming (SSF) Process

Page 13: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

GEN2 Prototype Design

• Flexible design

• Assembled reactor moduleis 77 x 64 x 54 mm(25 stacks)

Assembled

module

Fabricated Parts Core Layers

gasket retainer

gasket

separation wall

foam

heater

Page 14: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Breadboard System

C8H18

Heat

Exchanger

ATR

WGS1

WGS2

H2O

Air

Air

PrOx

VaporizerCombustor

GC

GCAir

Desulfurizer Check Valve

Check Valve

GC

Pumps

Page 15: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

ATR Prototype Results(100 We)

0

10

20

30

40

50

60

70

80

60 80 100 120 140 160 180 200

Time on stream (min)

Mo

le %

/ C

on

ve

rsio

n

H2

N2

CO

CO2

X

Experimental Conditions: H2O/C = 2.0, O/C = 1.0Reactor Skin Temperature: 590 °C; Reactor Exit Temperature:385 °C1.5 SLPM air, 0.6 mL/min Iso-octane, 1.1 mL/min H2O

Page 16: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Minimal Coke Deposition

Page 17: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

WGS Prototype Results

• Temperature: 240°C• Flow rate: 40 ccm (1 We)• GHSV: 53,333 h-1

• Feed composition

15%N2

39%H2

6%CO2

31%H2O

10%CO

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140

Packed Bed (120 mg)Single Foam (300 mg)

Time (hr)

Con

vers

ion

(%)

Page 18: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

340 °C

290 °C

20Channels

CO = 6.1%

CO < 0.6%

CO ~ 1.1%

3.75 l/min

WGS Prototype Results(100 We)

15Channels

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140

Dual: 340 & 290 °CSingle: 330-390 °C

Time (min)

Con

vers

ion

(%)

Page 19: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

PrOx Prototype Results

• 4 % Pt-Al2O3 sol-slurry hybrid washcoat

• WHSV = 50 lit hr-1 g-cat-1

• Increased catalyst loading of ~250 mg/foam

• Inlet stream compositions (simulated WGS exhaust):– CO : 0.79 – 0.81 %

– O2 : 0.81 – 1.19 %

– CO2 : 14.91 – 15.28 %

– H2 : 30.58 – 31.32 %

– H2O : 15.54 %

– N2 : 36.23 – 36.99 %

Page 20: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

PrOx Prototype Results

Page 21: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Catalytic Tailgas CombustorPrototype

Burner Characteristics:• 100 W nominal capacity mesoscale burner

• 80 ppi Pt-coated FeCrAlloy metal foam

• 8.0 L/min tailgas low-H2 surrogate flow rate

Page 22: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Catalytic Tailgas Burner andHeat Exchanger Prototype

• Performance tests conducted for 1.5% - 8% H2 concentrations• Current test results show single-sided efficiencies of 35-45%• Double-sided efficiencies anticipated in 65-80% range

Page 23: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

GEN2 100 WePrototype Design

8,3337,14225,0005,500 Based on Foam

9,0912,52510,4175,882 Target

6

11111Modules

Power Density (W/L)*

30152010No. of Foam cores

Pt/Al2O3Au/CeO2Au/CeO2Ni/CeZrO2Catalyst Type

8

6

340

WGS

450

Vap/Com

124Foam Volume (cc)

2.44.51.5Catalyst Weight (g)

220290600Temperature (°C)PrOxATR

Page 24: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Interactions andCollaborations

• Osram Sylvania (some IP transfer): JoelChristian - scale up of catalysts

• Ricardo: Marc Wiseman - system optimizationand cost analysis

• Mesofuel: Doyle Miller - heat exchanger designand fabrication

• IMM: Volker Hessel - reactor designoptimization

Page 25: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Responses to Previous YearReviewers’ Comments

• Capacity of Cu(I) zeolite too low• Coking of Ni-based ATR catalysts• Verify performance of WGS catalysts• Bottoms up approach• Slow progress in developing microreactors• Minimal involvement by companies• Microprocessor work appears to be similar to PNNL• Recommendations: Sulfur-tolerant ATR and hot gas

sulfur sorbent

Page 26: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Future Work

• Remainder of FY03- Increase module power densities

• Increase catalyst loading and utilization• Decrease parasitic weight (reactor and foam)

- Assemble 100 W breadboard fuel processor- Evaluate cost and final size- Estimate start-up time

• FY04 (through end of 2004)- Demonstrate integrated module- Assemble 1 kW breadboard fuel processor

Page 27: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Ceramic Insulating Layer

Stack Level Integration

Page 28: Fuel Processors for PEM Fuel Cells - Energy.gov"This presentation does not contain any proprietary or confidential information." ATR Prototype Results (100 W e) 0 10 20 30 40 50 60

"This presentation does not contain any proprietary or confidential information."

Thank You

Project Director: Levi Thompson ([email protected])Co-PIs: Gulari, Savage, Schwank & Yang (ChE);

Assanis, Im, Ni & Wooldridge (ME);Dahm & Powell (Aero)

Subcontractors: Ricardo, Inc. (MI); Osram Sylvania;IMM (Germany); MesoFuel (NM)

+High Degreeof Integration

High PerformanceMaterials

+ Microsystems