Top Banner
From particles to continuum – Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi Scale Mechanics, TS, CTW, UTwente, POBox 217, 7500AE Enschede, NL --- [email protected] Overview Block #1 week 16 Introduction: Sound propagation (discrete and continuous) week 17 – free time for practice and assignments week 18 Particle Methods (contact and efficient detection) and MD for fluids and solids with examples and programming week 19 - free week Block #2 weeks 20 - 22 Perturbation theory and stability analysis Applied to flowing systems – practice and applications Block #3 weeks 23 - 25 Static equilibrium mechanical systems (discrete and continuous)
39

From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Jul 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

From particles to continuum –Micro-Macro Methods

Stefan Luding

V. Magnanimo, A. R. Thornton, S. Srivastava

Multi Scale Mechanics, TS, CTW, UTwente,

POBox 217, 7500AE Enschede, NL --- [email protected]

Overview

Block #1week 16 Introduction: Sound propagation (discrete and continuous)week 17 – free time for practice and assignmentsweek 18 Particle Methods (contact and efficient detection) and

MD for fluids and solids with examples and programmingweek 19 - free week

Block #2weeks 20 - 22 Perturbation theory and stability analysis

Applied to flowing systems – practice and applications

Block #3weeks 23 - 25 Static equilibrium mechanical systems

(discrete and continuous)

Page 2: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Goal

Block #1week 16 Understand sound propagation (discrete and continuous)week 17 Prepare MD code – time-scales, sound, …

week 18 Implement contact model and efficient contact detectionweek 19 - free week

Block #2weeks 20 - 22 Apply perturbation theory and stability analysis

Block #3weeks 23 - 25 Apply static equilibrium, linear methods

Goal

Block #1week 16 Understand sound propagation (discrete and continuous)week 17 Prepare MD code – time-scales, sound, …

What are the time-scales? what is sound speed? in ‘my’ system?week 18 Implement contact model and efficient contact detection

How many particles can I simulate with ‘my’ code? which time?

Block #2weeks 20 - 22 Apply perturbation theory and stability analysis

When does my system become unstable? for which modes?

Block #3weeks 23 - 25 Apply static equilibrium, linear methods

How are moduli related to eigen-modes? and sound-speed?

Page 3: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

• Introduction

• Contact Models

• DEM/MD simulations

• Application/Example Sound

• Outlook

Single

particle

Contacts

Many

particle

simulation

Continuum Theory

Content

Molecular Dynamics – soft/hard

1. Specify interactions

between bodies (for example

two colloids/atoms)

2. Compute all forces

3. Integrate the equations

of motion for all particles

i j i

j i

m →≠

=∑x f��

j i→f

Page 4: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

i ijf m kδ δ γδ= − = +�� �

- really simple ☺☺☺☺

- linear, analytical

- very easy to implement

Linear Contact modeli

f

δ

overlap ( ) ( )1

2i j i jd d r r nδ = + − − ⋅

� � �

rel. velocity ( )i j nδ = − − ⋅� � �

� v v

acceleration ( )δ = − − ⋅� � �

��i ja a n

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdfhttp://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf

i ijf m kδ δ γδ= − = +�� �

- really simple ☺☺☺☺

- linear, analytical

- very easy to implement

Linear Contact modeli

f

δ

overlap ( ) ( )1

2i j i jd d r r nδ = + − − ⋅

� � �

rel. velocity ( )i j nδ = − − ⋅� � �

� v v

acceleration ( )( )

1if f

j

jii j i

i jij

ffa a n n f n

m m mδ

=−

= − − ⋅ = − − ⋅ = − ⋅

� �

���� � � � ���

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdfhttp://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf

Page 5: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

i ijf m kδ δ γδ= − = +�� �

- really simple ☺☺☺☺

- linear, analytical

- very easy to implement

Linear Contact model

elastic freq.0

ij

km

ω =

eigen-freq.

visc. diss.

0ijk mδ γδ δ+ + =� ��

2 02ij ij

k

m m

γδ δ δ+ + =� ��

2

0 2 0ω δ ηδ δ+ + =� ��

2 2

0ω ω η= −

2ij

m

γη =

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdfhttp://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf

i ijf m kδ δ γδ= − = +�� �

- really simple ☺☺☺☺

- linear, analytical

- very easy to implement

Linear Contact model

elastic freq.0

ij

km

ω =

eigen-freq.

visc. diss.

( ) exp( )sin( )t t tδ η ωω

= −0v

0ijk mδ γδ δ+ + =� ��

2 02ij ij

k

m m

γδ δ δ+ + =� ��

2

0 2 0ω δ ηδ δ+ + =� ��

2 2

0ω ω η= −

2ij

m

γη =

[]

( ) exp( ) sin( )

cos( )

t t t

t

δ η η ωω

ω ω

= − −

+

� 0v

contact duration ctπ

ω=

restitution coefficient( )

exp( )

c

c

tr

= −

= −0

v

v

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdfhttp://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf

Page 6: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Linear Contact model (mw=∞)

elastic freq.0

ij

km

ω =

eigen-freq.

visc. diss.

2 2

0ω ω η= −

2ij

m

γη =

contact duration ctπ

ω=

restitution coeff. exp( )c

r tη= −

particle-particle particle-wall

00

2

wall

i

km

ωω = =

2 2

0 2 4wallω ω η= −

2 2

wall

im

γ ηη = =

wallwallc c

t tπω

= >

exp( )wall wall wall

cr tη= −

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdfhttp://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf

Time-scales

contact duration ctπ

ω= wallwallc c

t tπω

= >

time-step50

ct

t∆ <=

time between contacts

n ct t<

n ct t>

sound propagation ... with number of layers L c L

N t N

experiment T

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdfhttp://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf

Page 7: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Time-scales

contact duration ctπ

ω= argl e small

c ct t>

time-step50

ct

t∆ <=

different sized particlesn c

t t<

n ct t>

sound propagation ... with number of layers L c L

N t N

experiment T

time between contacts

http://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdfhttp://www2.msm.ctw.utwente.nl/sluding/PAPERS/coll2p.pdf

Molecular Dynamics – soft/hard

1. Specify interactions

between bodies (for example

two colloids/atoms)

2. Compute all forces

3. Integrate the equations

of motion for all particles

i j i

j i

m →≠

=∑x f��

j i→f

Page 8: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Continuum theory – hard …

• Pressure P

• Deviator Stress

• Energy Dissipation Rate I

( ) 0i

i

ut x

ρ ρ∂ ∂

+ =∂ ∂

( ) ( ) dev

i i i

i j

ijk

k

u u u P gt x x x

ρ ρ ρσ∂ ∂ ∂ ∂

+ = − + +∂ ∂ ∂ ∂

( )2 2 2 21 1 1 12 2 2 2k

k

u u uP

t xρ ρ ρ

ρ

∂ ∂+ = − + +

∂ ∂ v v

mass conservation:

momentum conservation:

energy balance:

dev

ijσ

( )212

dev

iki i i

k

u K gx

Iuρσ ρ∂

− − + −∂

v

Elastic hard spheres

• Pressure P

• Deviator Stress

• Energy Dissipation Rate I=0

0t

∂=

0ixP

∂= −

elastic steady state:

mass & energy conservation – OK

momentum balance:

dev 0ijσ =

0i

u I= =

0i

g =

Page 9: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

First example … pressure EQS

( ) ( )( )21 1 ν ν= + +

arP

Eg

V

( )2?ν =

ag

Pressure (Equation of State – 2D)

fluid, disordered

solid, ordered

phase transitionat critical density

PV/E-1=2ννννg(νννν)

S. Luding, Nonlinearity, Dec. 2009

Page 10: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Elastic hard spheres in gravity

• N particles

• Kinetic Energy

• What is the density profile ?

gravity

Elastic hard spheres in gravity

• N particles

• Kinetic Energy

• What is the density profile ?

gravity

Page 11: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Elastic hard spheres in gravity

• Pressure P = global equation of state

• Deviator Stress

• Energy Dissipation Rate I=0

0t

∂=

0i

i

P gx

ρ∂

= − +∂

elastic steady state:

mass & energy conservation – OK

momentum balance:

dev 0ijσ =

0i

u I= =

Elastic hard spheres in gravity

• N particles

• Kinetic Energy

• What is the density profile ?

gravity

Page 12: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Hard sphere gas in gravity – which EQS?

fluid, disorderedexponential tail

solid, ordered

phase transitionat critical density

Structure formation under shear

Low density -> linear velocity profile

High density -> shear localization

Page 13: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Sheared systems – linear stability (2D)

Sheared systems – linear stability (2D)

Page 14: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Sheared systems – linear stability (2D)

Sheared systems – linear stability (2D)

Shukla, Alam, Luding, 2008

Page 15: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Shear (first normal stress difference)

Shear (first normal stress difference)

Page 16: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Structure formation under shear

Low density -> linear velocity profile

High density -> shear localization

shear “viscosity” (2D)

S. Luding, Nonlinearity, Dec. 2009

Page 17: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Global equations of state (2D)

Shear (viscosity at high density)

homogeneous

inhomogeneous=> dilatancy

critical density

( )1

133

E

η

η ην ν

= +

R. Garcia-Rojo, S. Luding, J. J. Brey, PRE 2006

Page 18: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Shear viscosity divergence: power -1

( )1

133

E

η

η ην ν

= +

• Pressure vs. density

• Global equation of state (crystallization)

• Shear stress (viscosity) divergence -> J

• Homogeneous and sheared …

Summary

Page 19: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

• Pressure vs. density

• Global equation of state (crystallization)

• Shear stress (viscosity) divergence -> J

• Homogeneous and sheared

• But: which power law is it?

Summary

Which power law is it? … really -1?

Approach to jamming

Page 20: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Which power law is it? … really -1?

Otsuki, Hayakawa -> -3 !!!

Approach to jamming

Which power law is it? … really -1?

Otsuki, Hayakawa -> -3 !!!

Approach to jamming

Page 21: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Which power law is it? … really -1?

Otsuki, Hayakawa -> -3 !!!

Approach to jamming

Approach to jamming

• Which power law is it? … really -1?

• control parameter -> dim.less. dissip.rate

Page 22: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Approach to jamming

• Which power law is it? … really -1?

• control parameter -> dim.less. dissip.rate

Approach to jamming

• Which power law is it? … really -1?

M. Otsuki, H. Hayakawa, S. Luding, JTP, 2010

Page 23: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Approach to jamming

• Which time-scales?

1. shear rate (inverse)

2. contact duration tc

3. dissipation time

ττττw=nT/S=1./3.

M. Otsuki, H. Hayakawa, S. Luding, JTP, 2010

• Pressure vs. density

• Global equation of state (crystallization)

• Shear stress (viscosity) divergence -> J

• Homogeneous and sheared

• Which power law is it? Hard vs. Soft

• Hard/soft jamming

• Almost elastic vs. dissipative

• Hard/rigid vs. soft

• Kinetic theory vs. multi-particle contacts

Summary

Page 24: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

• Pressure vs. density

• Global equation of state (crystallization)

• Shear stress (viscosity) divergence -> J

• Homogeneous and sheared

• Which power law is it? Hard vs. Soft

• Open issues:

• Dense (and inhomogeneous) systems

• Anisotropy, micro-structure, …

• Experimental validation, …

Summary

Application/Example - SOUND

An estimate for sound propagation speed …

Page 25: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Application/Example - SOUND

Soil investigation

- Seismology

- Oil exploration

- …

Compressive (P) and Shear (S) waves

Sound

Page 26: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Model system

P-wave animation

Page 27: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Influence of “micro” propertiesCompressive (P)-wave

Elastic Visco-Elastic

How relevant is the damping coefficient in our model ?

2

1 1

1

2

C Cc c c c t c c c c

p V c cV

aC k n n n n k n t n tαβγφ α β γ φ α β γ φ

∈ = =

= +

∑ ∑ ∑

Wave speed from the stiffness tensor

zzzzpz

CV

ρ=

Page 28: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Modes

• P-waves

• S-waves

• R-waves

• …

Structure

• Mono-disperse

• Poly-disperse

• Disordered

• …

Micro-Parameters

• Damping

• Friction (Rotations)

• Adhesion

• Contact laws …

• …

Towards complexity

Velocities

with rotation+friction

Page 29: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Weak polydispersity

δδδδ = a/1000

∆∆∆∆a = δδδδ/2, δδδδ and 2δδδδa

- The system is practically unchanged at the structure level

- Wide distribution of weak and strong contacts

and most important opening of contacts

P-wave animation

Page 30: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

P-wave animation

Velocities

with rotation+friction frictionless+weak disorder

Page 31: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Dispersion relations

∆∆∆∆a = δ/2δ/2δ/2δ/2space-time-FFT

from eigenvalue calc.

Density of states

ordered

disordered

Page 32: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Eigenmodes

Eigenmodes

Page 33: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Question

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

Question

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

- adhesion?

- friction?

- preparation history?

Page 34: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Goal

Block #1week 16 Understand sound propagation (discrete and continuous)week 17 Prepare MD code – time-scales, sound, …

What are the time-scales? what is sound speed? in ‘my’ system?week 18 Implement contact model and efficient contact detection

How many particles can I simulate with ‘my’ code? which time?

Block #2weeks 20 - 22 Apply perturbation theory and stability analysis

When does my system become unstable? for which modes?

Block #3weeks 23 - 25 Apply static equilibrium, linear methods

How are moduli related to eigen-modes? and sound-speed?

Question

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

- adhesion?

- friction?

Weak effect of adhesion and friction (strong for µ=0)

- preparation history?

Page 35: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Question

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

- adhesion?

- friction? wasn’t there something else?

Weak effect of adhesion and friction (strong for µ=0)

- preparation history?

+Tangential elasticityOptical branch? (kt/kn=2)

Page 36: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Dispersion relations with tangential elasticity

Partec2007 132

Rotation waves ?

Page 37: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Question

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

- adhesion?

- friction?

Weak effect of adhesion and friction (strong for µ=0)

- preparation history?

Question & Conclusion

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

- adhesion?

- friction?

Weak effect of adhesion and friction (strong for µ=0)

- preparation history?

… insensitive to pre-failure �

… much stronger post-peak damping

Page 38: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

P-wave animation

Question

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

- adhesion?

- friction?

Weak effect of adhesion and friction (strong for µ=0)

- preparation history?

… insensitive to pre-failure �

… much stronger post-peak damping

Page 39: From particles to continuum – Micro-Macro Methods · Micro-Macro Methods Stefan Luding V. Magnanimo, A. R. Thornton, S. Srivastava Multi ScaleMechanics, TS, CTW, UTwente, POBox217,

Goal

Block #1week 16 Understand sound propagation (discrete and continuous)week 17 Prepare MD code – time-scales, sound, …

What are the time-scales? what is sound speed? in ‘my’ system?week 18 Implement contact model and efficient contact detection

How many particles can I simulate with ‘my’ code? which time?

Block #2weeks 20 - 22 Apply perturbation theory and stability analysis

When does my system become unstable? for which modes?

Block #3weeks 23 - 25 Apply static equilibrium, linear methods

How are moduli related to eigen-modes? and sound-speed?

Questions?