Top Banner
IBr - Simulations Motivation Solvation Dynamics Previous IX - (CO2)n Systems Why IBr - (CO2)n? Theory Model Hamiltonian Minimal Structures Simulated Spectrum Nonadiabatic MD Near-IR Results Branching Ratios Ground-State Recombination Excited-State Trapping Long-time Simulations UV Results Branching Ratios Spin-Orbit Quenching Summary Future Directions From Femtoseconds to Nanoseconds Simulation of IBr - Photodissociation Dynamics in CO 2 Clusters Matt Thompson JILA University of Colorado at Boulder 2007-04-13 Doctoral Dissertation Defense
62

From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

Jun 22, 2015

Download

Education

Matt Thompson

This is my thesis defense talk. Be afraid!
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

From Femtoseconds to NanosecondsSimulation of IBr− Photodissociation Dynamics in

CO2 Clusters

Matt Thompson

JILAUniversity of Colorado at Boulder

2007-04-13Doctoral Dissertation Defense

Page 2: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Outline

Motivation

Theory

Near-IR Results

Ground-State Recombination

UV Results

Page 3: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Outline

Motivation

Theory

Near-IR Results

Ground-State Recombination

UV Results

Page 4: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Solvation DynamicsWhy Clusters?

É Solvation in bulk liquids: size O(1023)É Large size often means averaging is necessaryÉ Clusters allow us to study solvation while avoidingthe averaging effects

É Lineberger group pioneered the use of chargedclusters: use of MS to select clusters

É Allows study of solvation effects from a singlesolvent molecule to those from tens of solventmolecules

É Focus on the IX−(CO2)n work—but many more havebeen successfully studied

Page 5: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

How To Do IX−(CO2)n PhotodissociationLineberger Group

É Cluster anions generated in expansionÉ Ions size-selected via TOF mass spectrometerÉ Laser pulse dissociates clusterÉ Product ratios detected by mass spectrometryÉ Ground-state recombination studied viapump-probe

Page 6: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Previous I−2(CO2)n Work

Lineberger and Parson Groups

2 3 4 5 6 7 8R (Ang)

-1

0

1

2

Ene

rgy

(eV

)

X 2Σ+

u,1/2

B 2Σ+

g,1/2

A 2Πg,3/2

A' 2Πg,1/2

a 2Πu,3/2

a' 2Πu,1/2

I* + I−

I + I−

Good agreement in ratios, sims predicted mech. ofefficient SO quenching in UV

Page 7: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Previous ICl−(CO2)n WorkLineberger and Parson Groups

2 3 4 5 6 7 8R (Ang)

-1

0

1

2

Ene

rgy

(eV

)

X 2Σ+

1/2

A 2Π3/2

A' 2Π1/2

a 2Π3/2

a' 2Π1/2

B 2Σ+

1/2

I* + Cl−

I− + Cl*

I− + Cl

I + Cl−

0 1 2 3 4 5 6 7 8 9 10 11 12 130

20

40

60

80

100

ExperimentTheory

0 1 2 3 4 5 6 7 8 9 10 11 12 130

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13No. of CO2

0

20

40

60

80

100

I−

Cl−

ICl−

Diff. at large sizes due to formation of ES-trapped ICl−species; low abs. cross section makes time-resolved

expts hard

Page 8: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

IBr−(CO2)nA “Gentler” System?

É ICl−(CO2)n showed interesting dynamics possiblewith a heteronuclear solute but had expt. and sim.challenges

É IBr−(CO2)n: Better system to study a heteronuclearsolvent?É Electronegativity diff. btw. I/Br smaller than I/ClÉ Intuition suggests abs. cross section btw. I−2 and ICl−É Well-known Br-CO2 E− V interaction: could we seethis?

Page 9: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Outline

Motivation

Theory

Near-IR Results

Ground-State Recombination

UV Results

Page 10: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Model HamiltonianMaslen, Faeder, and Parson

É Solute ab initioÉ Eigenstates of bare anionÉ icMRCISD calculated via MOLPROÉ Spin-orbit coupling, transition DMA, and transitionangular momentum calculated

É Solute-solvent interactionsÉ Distributed multipoles for solute charge densityÉ Solvent polarizes solute wavefunctions

É Dispersion-repulsionÉ Pairwise Lennard-Jones atom-atom potentialsÉ Fit to replicate experimental I− · · ·CO2 interactionand CCSD(T) Br− · · ·CO2 calculations

Page 11: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Potential Energy Curves

2 3 4 5 6 7 8R (Ang)

-1

-0.5

0

0.5

1

1.5

2

Ene

rgy

(eV

)

I + Br−

I− + Br

I− + Br*

I* + Br−

X 2Σ+

1/2

B 2Σ+

1/2

A 2Π3/2

A' 2Π1/2

a 2Π3/2

a' 2Π1/2

É 6-state icMRCI usingECPnMDF ECPs with CPP

É Augmented basis:(7s7p3d2f)/[5s5p3d2f]

É Spin-orbit effects viaSO-ECP

É Transition DMA, NACME,transition angularmomentum

Page 12: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Potential Energy CurvesTable of Energetics (in eV)

Calc. Expt. Δ

Spin-Orbit: Br: 0.4237 0.4569 -0.0332I: 0.8932 0.9427 -0.0495

ΔEA: 0.3156 0.3045 0.0111D0: 0.946 0.954 -0.008

Re (Å): 3.05

Page 13: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Model HamiltonianMaslen, Faeder, and Parson

É Solute ab initioÉ Eigenstates of bare anionÉ icMRCISD calculated via MOLPROÉ Spin-orbit coupling, transition DMA, and transitionangular momentum calculated

É Solute-solvent interactionsÉ Distributed multipoles for solute charge densityÉ Solvent polarizes solute wavefunctions

É Dispersion-repulsionÉ Pairwise Lennard-Jones atom-atom potentialsÉ Fit to replicate experimental I− · · ·CO2 interactionand CCSD(T) Br− · · ·CO2 calculations

Page 14: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Solute-Solvent InteractionsDistributed Multipole Analysis

Page 15: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Model HamiltonianMaslen, Faeder, and Parson

É Solute ab initioÉ Eigenstates of bare anionÉ icMRCISD calculated via MOLPROÉ Spin-orbit coupling, transition DMA, and transitionangular momentum calculated

É Solute-solvent interactionsÉ Distributed multipoles for solute charge densityÉ Solvent polarizes solute wavefunctions

É Dispersion-repulsionÉ Pairwise Lennard-Jones atom-atom potentialsÉ Fit to replicate experimental I− · · ·CO2 interactionand CCSD(T) Br− · · ·CO2 calculations

Page 16: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Minimum Energy IBr−(CO2)n Structures

Page 17: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Simulated Abs. SpectrumBare Ion

300 400 500 600 700 800 900 1000Wavelength (nm)

0

0.5

1

1.5

Abs

orpt

ion

Cro

ss S

ectio

n (

x10-1

6 cm

2 )

400 600 800 1000 12000

0.01

0.02

0.03

0.04

B 2Σ+

1/2

a' 2Π1/2

A' 2Π1/2

A 2Π3/2a

2Π3/2

Expt. peak740 nm

Page 18: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Nonadiabatic Molecular DynamicsMaslen, Faeder, and Parson

É Classical path surface-hopping using least switches(Tully, 1990)

É Nuclear deg. of freedom, R(t)É Elec. deg. of freedom quantum, c(t)

É quantum: ιℏc(t) = cE − ιℏ∑

j cjR(t) · dj

É classical: MR(t) = ⟨ϕn|∇RH|ϕn⟩É Hops preserve probabilities |c(t)|2 in an ensembleof trajectories

É Requires only H(R) and its derivatives

Page 19: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Outline

Motivation

Theory

Near-IR Results

Ground-State Recombination

UV Results

Page 20: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

790-nm Simulations100 Traj. per Ensemble, 50-ps Run-time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% I− Experiment

Theory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% B

r−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14No. of CO2

0

20

40

60

80

100

% IB

r−

É I− channel remains openat larger cluster size

É Br− more prevalent insimulation usu. at costof IBr− in mediumclusters

É At n > 8, IBr− productdominates, but...

Page 21: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

790-nm Simulations - GS Product Only100 Traj. per Ensemble, 50-ps Run-time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% I− Experiment

Theory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% B

r−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14No. of CO2

0

20

40

60

80

100

% IB

r−

É IBr− product inmedium-size clustersare primarily trapped onexcited-state

É What is the correctpicture to use forsimulatedphotoproducts?

Page 22: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

790-nm SimulationsExtrapolation to “Infinite” Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% I− Experiment

Theory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% B

r−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14No. of CO2

0

20

40

60

80

100

% G

roun

d-S

tate

IBr−

É Final product ratiosextrapolated usingresults ofnanosecond-longtrajectories

É What is causing thisexcited-state trappingand can we visualize it?

Page 23: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Outline

Motivation

Theory

Near-IR Results

Ground-State Recombination

UV Results

Page 24: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Expt. Evidence of Trapping in IBr−(CO2)8Sanford, et al, JCP, 2005

0.0

0.2

0.4

0.6

0.8

0 200 5000 8000Pump-probe delay (ps)

No

rmal

ized

tw

o-p

ho

ton

co

un

ts

GSR recovery time slower than the 10-20 ps seen inI−2 (CO2)n clusters

Page 25: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

IBr−(CO2)8 PE SurfacePossible Way to Visualize Trapping

2 3 4 5 6 7 8R (Ang)

-0.5

0

0.5

1

1.5

2

2.5

Ene

rgy

(eV

)

É Generated as a "pull"surface from anIBr−(CO2)8 minimalenergy structure

É Surface shows a wellgenerated due tosolvent effects on A′

stateÉ Increase in excitationenergy (730 nm) doesincrease 50-ps IBr− GSyield

Page 26: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

IBr−(CO2)8 PE SurfaceProblems

2 3 4 5 6 7 8R (Ang)

-0.5

0

0.5

1

1.5

2

2.5

Ene

rgy

(eV

)

É PES is good only for asingle solute and solventconfiguration

É Provides no informationon how the solute andsolvent move in concert

É Can we define a solventcoordinate and plot thatagainst solutegeometry?

Page 27: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Solvent Coordinate, Δ

É Change in energy whencharge of −e is movedfrom one solute atom toanother

É For a fixed nuclearconfiguration, providesmeasure of the solventasymmetry

É Plots of R v. Δ providea picture of concertedsolvent and solutemovement in atrajectory

Page 28: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Excited-State Trapping of IBr−(CO2)850-ps Trajectories

É 89% of trajectoriestrapped in A′ state after50 ps

É Only 5% relax toground-state

É Expt. agrees thatlong-time trapping ishappening

Page 29: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Excited-State Trapping of IBr−(CO2)850-ps Trajectories

É 89% of trajectoriestrapped in A′ state after50 ps

É Only 5% relax toground-state

É Expt. agrees thatlong-time trapping ishappening

Page 30: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

790-nm ns-Simulations of IBr−(CO2)8100 2-ns traj., 75 relaxed

Cluster needs to achieve more symmetric configurationto allow transition to ground state

Page 31: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Ground-State Recovery Dynamics ofIBr−(CO2)n

5 6 7 8 9 10 11 12 13 14 15 16No. of CO2 Solvent on IBr

1

10

100

1000

10000

Abs

orpt

ion

Rec

over

y T

ime

(ps)

ExperimentalTheory

Page 32: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Excited-State Well Statistics

6 7 8 9 10 11 12 13 14 15No. of CO2

-2

-1

0

1

2

∆Φ (

eV)

Page 33: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Excited-State Well for IBr−(CO2)12

É Both -Δ and +Δ wellsvisible

É Labile GS config leads totwo excitation zones

É Evidence of movementbtw wells shows TSbarrier small → fasterGSR time

Page 34: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Outline

Motivation

Theory

Near-IR Results

Ground-State Recombination

UV Results

Page 35: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

50-ps UV (355-nm) Simulations100 Traj. per Ensemble, 50-ps Run-time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% I−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% B

r−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14No. of CO2

0

20

40

60

80

100

% IB

r−

ExperimentTheory

É Worse agreement withexperiment cf. IRsimulations, but patternis there

É Higher KER with UVexcitation

É Too small Br· · ·CO2attraction leads toexcess Br− product?

É GS recombination insims: SO quenchingdifference?

Page 36: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

SO Quenching MechanismDelaney, Faeder, Parson, JCP, 1999

É SO quenching in simsvia charge transfer

É Large solventasymmetry allowscluster to compensatefor SO splitting

É What if there were acompeting process thatcould quench w/o CT?

É W/o CT, solvent transfercould be prevented andGSR product inhibited

Page 37: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

SO Quenching MechanismDelaney, Faeder, Parson, JCP, 1999

É SO quenching in simsvia charge transfer

É Large solventasymmetry allowscluster to compensatefor SO splitting

É What if there were acompeting process thatcould quench w/o CT?

É W/o CT, solvent transfercould be prevented andGSR product inhibited

Page 38: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Spin-Orbit Quenching in UV SimulationsDifference btw Expt and Sims?

SO quenching leading to GSR occurs at +Δ→ solvated I− and Br∗ quenching

Page 39: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Br(2P1/2) QuenchingCollisional Quenching via E− V Transfer

Br(2P1/2) + CO2(0000)E−V→ Br(2P3/2) + CO2(1001)

É Br SO splitting: 3685 cm−1

É CO2: ν1 + ν3 = (1001) = 3714.78 cm−1

É kE−V = 1.5 · 10−11 cm3/molecule/sÉ Branching Ratio: ϕ = 0.87± 0.15É Used as the pumping step in some CO2 lasers

Page 40: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Summary

É We have constructed an accurate potential energysurface for IBr− with associated properties.

É Simulations of near-IR photodissociation show goodagreement with experimental product trends.

É Long-time near-IR sims provide confirmation andexplanation for long expt. GS recombination time

É UV simulation agreement generally there, butshows discrepancies possibly due to competing SOquenching processes

Page 41: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Future Directions

É Photoelectron imaging of IBr−(CO2)nÉ Simulate photoelectron signal as prev. done forI−2 (Ar)n

É Provide another measure of absorption recoveryÉ Possible probe into UV differences: Br v. Br∗ neutral

É Incorporation of CO2 vibrations?É Revisiting ICl−(CO2)n dynamics with our IBr−(CO2)nknowledge

Page 42: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Acknowledgments

É Todd Sanford, Jack Barbera, and Joshua MartinÉ Vladimir, Joshua D., Jeff, many other postdocsÉ Elisa Miller, Ryan Calvi, and the other PES folksÉ Prof. Lineberger

É Drs Nicole Delaney, Jim Faeder, Paul Maslen

É Prof. Parson

Page 43: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Thank you for coming.Fin.

Page 44: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Nonadiabatic Molecular DynamicsDetails of Trajectory Methods

É Begin with minimum energy IBr−(CO2)n clusterÉ Warm for 40 ps at 60 K followed by 100-ps run totest energy stability

É Ensemble Construction:É Sample a 2-fs time-step trajectory every 5 ps untilneeded number of configurations are constructed

É Long sampling run ensures sufficiently randomgeometries

É I-Br bond length adjusted to match photon energyÉ Trajectories run with 1.0-fs time step consideredcomplete:É I-Br bond length exceeds 40 0 → dissociatedÉ 20+ crossings of ground-state well → recombinedÉ Simulation duration elapsed → depends...

Page 45: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Sanov IBr− Fit

Page 46: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

LCAO-MO Anomalous Charge Flow

Page 47: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

IBr−(CO2)12 Absorption Spectrum

200 300 400 500 600 700 800 900 1000Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

Abs

orpt

ion

Cro

ss S

ectio

n (

x10-1

6 cm

2 )

600 700 8000

0.05

0.1

B 2Σ+

1/2

a' 2Π1/2

A' 2Π1/2

Bare IBr−

n=16

n=11

Page 48: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Br− · · ·CO2 Interactions

2 3 4 5 6 7 8 9 10RBr-C (Ang)

-300

-200

-100

0

100

200

300

Ene

rgy

(eV

)

T-Shape CCSD(T)Linear CCSD(T)

Page 49: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Br− · · ·CO2 Fits

2 3 4 5 6 7 8 9 10RBr-C (Ang)

-300

-200

-100

0

100

200

300

400

500

Ene

rgy

(meV

)

NewMD ValuesMDF MRCIMDF CCSD(T)

Page 50: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Br− · · ·CO2 LJ Interactions

2 3 4 5 6 7 8RBr-C (Ang)

-50

-40

-30

-20

-10

0

10

20

30

40

50

Ene

rgy

(meV

)

TShape LJLinear LJ

Page 51: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

LJ Fit Branching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% I−

Experiment

Theory (Inf.)

Theory (CI Fit)

Theory (CC Fit)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% B

r−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14No. of CO2

0

20

40

60

80

100

% IB

r−

Page 52: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

GSR Times for LJ Fit

1

10

100

1000

10000

Abs

orpt

ion

Rec

over

y T

ime

(ps)

5 6 7 8 9 10 11 12 13 14 15 16No. of CO2 Solvent on IBr

1

10

100

1000

10000

Page 53: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Wavelength Branching

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% I−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

% B

r−

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14No. of CO2

0

20

40

60

80

100

% G

roun

d S

tate

IBr−

Page 54: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

GSR Results with 770 and 840 nm

5 6 7 8 9 10 11 12 13 14 15 16No. of CO2 Solvent on IBr

1

10

100

1000

10000

Abs

orpt

ion

Rec

over

y T

ime

(ps)

Page 55: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

GSR Dynamics of IBr−(CO2)8100 Trajectory Ensemble, 2000-ps Run-time

0 500 1000 1500 2000Time (ps)

0

20

40

60

80

No.

of R

ecom

b. T

raje

ctor

ies

0 500 1000 1500 20000

0.2

0.4

0.6

0.8

1

Expt. S

ignal (Arb. U

nits)

τMD = 498 ± 23 ps

τexpt = 900 ± 100 ps

Page 56: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

GSR Dynamics of IBr−(CO2)12223 Trajectory Ensemble, 300-ps Run-time

0 50 100 150 200 250 300Time (ps)

0

50

100

150

200

No.

of R

ecom

b. T

raje

ctor

ies

τ = 61.8 ± 2.1 ps

Page 57: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

Ground-State Well Statistics

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16No. of CO2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Initi

al ∆

Φ (

eV)

Page 58: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

GSR Dynamics of IBr−(CO2)14

0 500 1000 1500 2000Time (ps)

0

20

40

60

80

100

No.

of R

ecom

b. T

raje

ctor

ies

τsing = 68.9 ± 6.0 ps

τfast = 40.9 ± 1.9 psτslow = 1500 ± 440 ps

Page 59: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

GSR Solv. Flow Plot of IBr−(CO2)14

Page 60: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

IBr−(CO2)6 After UV Exc.

Page 61: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

GSR for IBr−(CO2)13 in UV

-2

0 Energy (eV

)

Br

deloc.

I

Charge

-0.02

0

0.02

dPhi

0 200 400 600 800 1000Time (fs)

2

4

6

8

R (A

ng)

Page 62: From Femtoseconds to Nanoseconds: Simulation of IBr− Photodissociation Dynamics in CO2 Clusters

IBr− Simulations

MotivationSolvation Dynamics

Previous IX− (CO2 )nSystems

Why IBr− (CO2 )n?

TheoryModel Hamiltonian

Minimal Structures

Simulated Spectrum

Nonadiabatic MD

Near-IR ResultsBranching Ratios

Ground-StateRecombinationExcited-State Trapping

Long-time Simulations

UV ResultsBranching Ratios

Spin-Orbit Quenching

Summary

Future Directions

IBr− and IBr Curves

2 3 4 5 6 7 8R (Ang)

-1

0

1

2

3

4

5

6

7

E (

eV)

I* + Br*

I + Br

I + Br*

I* + Br

I* + Br−

I− + Br*

I− + Br

I + Br−