Top Banner
BME 310 Biomedical Computing - J.Schesser 226 Frequency Response of FIR Filters Lecture #9 Chapter 6
24

Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

Aug 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

226

Frequency Response of FIR Filters

Lecture #9Chapter 6

Page 2: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

227

What Is this Course All About ?

• To Gain an Appreciation of the Various Types of Signals and Systems

• To Analyze The Various Types of Systems

• To Learn the Skills and Tools needed to Perform These Analyses.

• To Understand How Computers Process Signals and Systems

Page 3: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

228

Frequency Response• Study FIR systems, where the input is a

discrete-time sinusoidal signal, in particular, a discrete-time complex exponential signal with normalized radian frequency

• Let’s substitute this signal into the general expression of a FIR.

ˆ

( )ˆ[ ] ( ) ;

s

j j t

j nTjs s

j j n

x t Ae ex n x nT Ae e T

Ae e n

Page 4: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

229

Frequency Response Function ˆ

0

ˆ ( )

0

[ ]

[ ] [ ]

j j n

M

kk

Mj j n k

kk

x n Ae e

y n b x n k

b Ae e

• We define this function as the Frequency Response Function or the Frequency Response

ˆ ˆ

ˆ ˆ

0

[ ] ( )

ˆ( )

ˆ( ) ( )

Mj k j j n

kk

j j n

Mj j k

kk

y n b e Ae e

H Ae e

H H e b e

)( jeH

Page 5: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

230

Frequency Response FunctionAnother Approach using Convolution

ˆ ˆ ( )

0

ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ

0

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

( [ ] ) ( [ ] [ ] )

Since [ ] 0 for and

j j n j j n l

M

k

j j n l j j n j l

l l l

Mj l j j n j l j j n

l l k

x n Ae e x n l Ae e

h n h k n k

y n h l x n l h l Ae e h l Ae e e

h l e Ae e h k l k e Ae e

l k l k

ˆ ˆ

0

[ ] 1 for , then the outer summation can be removed.

( [ ] )M

j k j j n

k

l k l k

h k e Ae e

Page 6: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

231

Frequency Response of a FIR

1. When the input is a discrete-time complex exponential signal, the output of an FIR filter is also a discrete-time complex exponential signal with a different amplitude but same frequency

2. The Frequency Response Function only applies to inputs which are discrete-time complex exponential signals

3. The Frequency Response is a complex number which can be represented in Cartesian or polar form

4. Therefore, the amplitude of the output is product of the amplitude of the input signal times the amplitude of the Frequency Response (polar form)

5. The phase of the output is the sum of the phase of the input and the phase of the Frequency Response

M

k

kjM

k

kjk

j ekhebeH0

ˆ

0

ˆˆ ][)(

Page 7: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

232

Polar Form of the Frequency Responseˆ

ˆ

ˆ

ˆ ˆ ( )

ˆ ˆ

ˆ ˆ( )

ˆ ˆ( ( ) )

( ) ( )

[ ] ( )

( )

( ( ) )

j

j

j

j j j H e

j j j n

j j H e j j n

j j H e j n

H e H e e

y n H e Ae e

H e e Ae e

A H e e e

ˆ

ˆ

Note that this: [ ] ( ) [ ]

is only meaningful for [ ]

j

j j n

y n H e x n

x n Ae e

Page 8: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

233

An Example

ˆ)(

ˆcos22)(

)ˆcos22()2(

121

)(

}1 ,2 ,1{}{Let

ˆ

ˆ

ˆ

ˆˆˆ

2ˆˆ

2

0

ˆˆ

j

j

j

jjj

jjk

kjk

j

k

eH

eH

eeee

ee

ebeH

b

Page 9: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

234

Example continued

njj

njj

njjjnjjj

j

j

jj

njj

ee

ee

eeeeeeH

nxeHny

e

eeH

eenx

312

3)43(

343343

3

3

33

34

6

6

232)(

][)(][

3

)3cos22()(

,3ˆ since

2][let system For this

Page 10: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

235

Using Superposition• We can use superposition to find the outputs of more

complex signals.1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1

0 1 1 1

ˆ ˆ0 10

ˆ ˆˆ 0 10

ˆ ˆ ˆ ˆ0 0 1 10

ˆ ˆ0 0 10

ˆ[ ] cos( )

( )2

[ ] ( ) { ( )}2

( ) ( ) ( )2 2

( ) ( )2

j j n j j nj n

j j n j j nj j n

j j j n j j j nj j n

j j jj j n

x n A A nAA e e e e e

Ay n H e A e e e e e

A AH e A e H e e e H e e e

AH e A e H e e e

1 1 1 1

ˆ ˆ1 11 1 1 1 1 1

ˆ ˆ1 11 1 1 1 1

1

ˆ ˆ1

ˆ ˆ ˆ ˆ0 0 ( ) ( )1 10

ˆ ˆ ˆ0 ( ) ( )10

ˆ0 10

*( )2

( ) ( ) ( )2 2

( ) ( ) { }2

( ) ( )2

j j

j j

n j j j n

j j j n j j j nj j n j H e j H e

j j j n j j nj j H e j H e

jj

AH e e e

A AH e A e H e e e e H e e e e

AH e A H e e e e e e e

AH e A H e

ˆ ˆ1 1

1 1 1 1

1 1

ˆ ˆ( ( )) ( ( ))

ˆ ˆ00 1 1 1

{ }

ˆ( ) ( ) cos( ( ))

j jj n H e j n H e

j jj

e e

H e A A H e n H e

Page 11: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

236

An Example

4 4 4 4

For this system let [ ] 2cos( )4 2

ˆ since ,4

( ) (2 2cos ) (2 2) 3.414

[ ] 2 3.41cos(4

j j j j

x n n

H e e e e

y n

)2 4

6.82cos( ( 1) )4 2

This system is a time shifter

n

n

Page 12: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

237

Superposition

• Using superposition, find the output using the frequency response function for each component of the input

• Add up the component outputs to yield the complete output solution.

Page 13: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

238

Another Example

))1(87cos(31522.0)2)1(3cos(3344][

1522.0)87cos22()(

3)3cos22()(

4)0cos22()(8

7 ,3 ,0ˆfor

)87cos(3)23cos(34][let system For this

87

87

87

333

00

nnny

eeeH

eeeH

eeH

nnnx

jjj

jjj

jj

Page 14: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

239

Cascaded System• Two systems where the output of the first is the

input to the second.

• This states that a cascaded system can be replaced a single system with frequency response,

)( ˆ2

jeHLTI 1 LTI 2x[n]

)( ˆ1

jeH

][)(

][ˆ

1

1

nxeH

nyj

ˆj j nAe e

][)()(

][)(][ˆ

1

2

nxeHeH

nyeHnyjj

j

)()()( ˆ2

ˆ1

ˆ jjj eHeHeH

Page 15: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

240

Summary• The Frequency Response is associated a FIR system

with complex exponential signals as inputs• The Frequency Response can be used to calculate the

output signal of a system• Superposition can be used to find the output signal of

each component and the complete response can be obtained by adding the outputs of the components

• This type of analysis is called frequency domain analysis and we can work exclusively in the frequency– Solving for the output in the time domain (the difference

equation or impulse response) is not necessary.

Page 16: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

241

The Unit-Step Signal

• Before we continue, let’s define another important sequence called the unit step signal:

• This signal can be used represent real world signals since signals start as some point in time.

• A signal like x[n]=cos(.2πn) is defined for all -∞ < n < ∞ , while x[n]=cos(.2πn) u[n] is more realistic since it is defined only for n ≥ 0

0for 1 ][

0for 0

nnu

n

Page 17: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

242

Unit Step Example

cos[.2n]

-15 -10 -5 0 5 10 15 20

cos[.2n]*u[n]

-15 -10 -5 0 5 10 15 20

Page 18: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

243

Steady-State and Transient Response

• Let’s examine how systems responds to signals which begin at a particular time.

• We will see that the output show two phases:– A Transient Response or a period of time where the signal

“builds up” from its starting value (usually zero) to its final “state”

– A Steady State Response or the period where the transient response has “completed”

• Examples:– Turning on a light or a motor– Starting a car

Page 19: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

244

FIR System Transient and Steady-State Response

• The input to the system is:

• Our FIR system:

• The output:

0for 0 ][][

0for ˆ

ˆ

nnuXenx

nXenj

nj

M

k

kjk

j ebeH0

ˆˆ )(

M

k

knjk

M

kk knuXebknxbny

0

)(ˆ

0][][][

Page 20: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

245

FIR System Transient and Steady-State Response

• Let’s study the output:

0}0

000

00{

]}[

)]1([][)]1([

]1[]0[{]0[

]}[

)]1([][)]1([

]1[]0[{

][][

)(ˆ

))1((ˆ1

)(ˆ))1((ˆ1

)1(ˆ1

)0(ˆ0

)(ˆ

))1((ˆ1

)(ˆ))1((ˆ1

)1(ˆ1

)0(ˆ0

)(ˆ

))1((ˆ1

)(ˆ))1((ˆ1

)1(ˆ1

)0(ˆ0

0

)(ˆ

MnjM

lnjl

lnjl

lnjl

njnj

MnjM

lnjl

lnjl

lnjl

njnj

MnjM

lnjl

lnjl

lnjl

njnj

M

k

knjk

eb

ebebeb

ebebX

Mnueb

lnueblnueblnueb

nuebnuebXny

Mnueb

lnueblnueblnueb

nuebnuebX

knuXebny

Page 21: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

246

FIR System Transient and Steady-State Response

0at input thestarting toduemainly isIt !!response! transient theis This

}0

011

11{

]}[

)]1([

][

)]1([

]1[][{]0[

0

ˆˆ)(ˆ

))1((ˆ1

)(ˆ))1((ˆ1

)1(ˆ1

)0(ˆ0

)(ˆ

))1((ˆ1

)(ˆ

))1((ˆ1

)1(ˆ1

)0(ˆ0

n

eXebeb

ebebeb

ebebX

Mnueb

lnueb

lnueb

lnueb

nuebnuebXMlny

n

k

njkjk

MnjM

lnjl

lnjl

lnjl

njnj

MnjM

lnjl

lnjl

lnjl

njnj

Page 22: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

247

FIR System Transient and Steady-State Response

ˆ ˆ( 0) ( 1)0 1

ˆ ˆ ˆ( ( 1)) ( ) ( ( 1))1 1

ˆ ( )

ˆ0

[ ] { [ 0] [ 1]

[ ( 1)] [ ] [ ( 1)]

[ ]}

{

j n j n

j n l j n l j n ll l l

j n MM

j

y n M X b e u n b e u n

b e u n l b e u n l b e u n l

b e u n M

X b e

ˆ( 0) ( 1)

1ˆ ˆ ˆ( ( 1)) ( ) ( ( 1))

1 1

ˆ ˆ ˆ( )

0

1 1

1 1 1

1}

This is the steady-state response!!!(Looks like the respo

n j n

j n l j n l j n ll l l

Mj n M j k j n

M kk

b e

b e b e b e

b e b Xe e

nse due to the input when the input is non-zero for all .)n

Page 23: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

248

An Example of the Transient and Steady State Response

x[n]

-1.5

-1

-0.5

0

0.5

1

1.5

-10 -5 0 5 10 15 20 25

y[n]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-10 -5 0 5 10 15 20 25

Page 24: Frequency Response of FIR Filtersjoelsd/Fundamentals/coursework/BME... · 2017. 7. 24. · BME 310 Biomedical Computing - J.Schesser 231 Frequency Response of a FIR 1. When the input

BME 310 Biomedical Computing -J.Schesser

249

Homework

• Exercises:– 6.1

• Problems:– 6.1, 6.2, – 6.4, 6.6 Use Matlab to plot the Frequency Response; show

your code– 6.7, – 6.12 Use Matlab to plot the Frequency Response; show

your code– 6.13