Top Banner
FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro
36

FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Dec 26, 2015

Download

Documents

Brooke Copeland
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

FREE CONVECTION

Nazaruddin SinagaLaboratorium Efisiensi dan Konservasi EnergiJurusan Teknik Mesin Universitas Diponegoro

Page 2: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

FREE CONVECTION

Page 3: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

The cooling of a boiled egg in a cooler environment by natural convection.

Page 4: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

The warming up of a cold drink in a warmer environment by natural convection

Page 5: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Natural Convection

Where we’ve been ……• Up to now, have considered forced convection, that is

an external driving force causes the flow.

Where we’re going:• Consider the case where fluid movement is by

buoyancy effects caused by temperature differential

Page 6: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Events due to natural convection• Weather events such as a thunderstorm• Glider planes• Radiator heaters• Hot air balloon

• Heat flow through and on outside of a double pane window

• Oceanic and atmospheric motions• Coffee cup example ….

Small velocity

Page 7: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Natural Convection

• New terms – Volumetric thermal expansion coefficient– Grashof number– Rayleigh number

• Buoyancy is the driving force– Stable versus unstable conditions

• Nusselt number relationship for laminar free convection on hot or cold surface

• Boundary layer impacts: laminar turbulent

Page 8: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Buoyancy is the driving force in Natural Convection

• Buoyancy is due to combination of– Differences in fluid density– Body force proportional to density– Body forces namely, gravity, also Coriolis force in

atmosphere and oceans• Convection flow is driven by buoyancy in unstable conditions• Fluid motion may be

(no constraining surface) or along a surface

Page 9: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Buoyancy is the driving force

• Free boundary layer flow

Heated wire or hot pipe

Page 10: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Typical velocity and temperature profiles for natural convection flow over a hot vertical plate at Ts inserted in a fluid at temperature T.

A heated vertical plate

Page 11: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Natural Convection Boundary Layer : Governing Equations

• The difference between the two flows (forced flow and free flow) is that, in free convection, a major role is played by buoyancy forces.

gX Very important

2

2

g 1

y

u

x

P

y

uv

x

uu

• Consider the x-momentum equation.

• As we know, , hence the x-pressure gradient in the boundary layer must equal that in the quiescent region outside the boundary layer.

0/ yp

Page 12: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

g-x

P

2

2

g y

u

y

uv

x

uu

Buoyancy force

2

2

g 1

y

ug

y

uv

x

uu

Pascal Law :

Page 13: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Governing Equations

• Define , the volumetric thermal expansion coefficient.

1

PT

For all liquids and gases

TTT

11

)( TTDensity gradient is due to the temperature gradient

TThus

RT

PRTP

1 :

:gas idealan For

Page 14: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Governing Equations

• Buoyancy effects replace pressure gradient in the momentum equation.

2

2

)( y

uvTTg

y

uv

x

uu

0

y

v

x

u

2

2

2

y

u

cy

T

y

Tv

x

Tu

p

Strongly coupled and must be solved simultaneously

• The buoyancy effects are confined to the momentum equation, so the mass and energy equations are the same.

Page 15: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Dimensionless Similarity Parameter

• The x-momentum and energy equations are

velocityreferencearbitrary an is u

and length, sticcharacteri a is L where

T

TT

0

*

00

sTT

u

vvand

u

uu

L

yyand

L

xx

2*

*2*

20

*

**

*

**

Re

1 T

)(

y

u

u

LTTg

y

uv

x

uu

L

s

PrRe

1 2*

*2

*

**

*

**

y

T

y

Tv

x

Tu

L

Page 16: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Dimensionless Similarity Parameter

• Define new dimensionless parameter,

1Re2

L

LGr1

Re2

L

LGr

2

32

020

)()(

LTTgLu

u

LTTgGr ss

L

forced natural

• Grashof number in natural convection is analogous to the Reynolds number in forced convection.

• Grashof number indicates the ratio of the buoyancy force to the viscous force.

• Higher Gr number means increased natural convection flow

Page 17: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

for pipes

for vertical flat plates

 for bluff bodies

The transition to turbulent flow occurs in the range for natural convection from vertical flat plates. At higher Grashof numbers, the boundary layer is turbulent; at lower Grashof numbers, the boundary layer is laminar.

Page 18: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

where the L and D subscripts indicates the length scale basis for the Grashof Number.g = acceleration due to Earth's gravityβ = volumetric thermal expansion coefficient (equal to

approximately 1/T, for ideal fluids, where T is absolute temperature)

Ts = surface temperatureT∞ = bulk temperatureL = lengthD = diameterν = kinematic viscosity

Page 19: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Franz GrashofBorn 11 July 1826

Düsseldorf, Germany

Died 26 October 1893 (aged 67)Karlsruhe, Germany

Nationality German

Fields Engineering

Page 20: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

TTs

u(x,y)

y

g

sT

T

x

v

u

Laminar Free Convection on Vertical Surface• As y : u = 0, T = T

• As y 0 : u = 0, T = Ts

• With little or no external driving flow, Re 0 and forced convection effects can be safely neglects

Pr),( LL GrfNu

1Re2

L

LGr

Page 21: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

The simple empirical correlations for the average Nusselt number Nu in natural convection are of the form :

Page 22: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

where RaL is the Rayleigh number, which is the product of the Grashof and Prandtl numbers:

o The values of the constants C and n depend on the geometry of the surface and the flow regime, which is characterized by the range of the Rayleigh number.

o The value of n is usually ¼ for laminar flow and 1/3 for turbulent flow, while the value of the constant C is normally less than 1.

o All fluid properties are to be evaluated at the film temperature Tf = (Ts + T)/2.

Page 23: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Empirical solution for the local Nusselt number in laminar free convection

(Pr)4

4/1

fGr

k

hxNu L

x

4/1Pr238.1Pr 1.2210.609

Pr 75.0Pr

f

(Pr)43

4

4/1

fGr

k

LhNu L

L

Average Nusselt # =

Where

Page 24: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Effects of Turbulence• Just like in forced convection flow, hydrodynamic instabilities may

result in the flow.• For example, illustrated for a heated vertical surface:• Define the Rayleigh number for relative magnitude of buoyancy

and viscous forces

TTs

3

,,

)(

Pr

xTTg

GrRa

s

cxcx

Page 25: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Empirical Correlations

Typical correlations for heat transfer coefficient developed from experimental data are expressed as:

3 Pr

LTTg GrRa s

LL

nLL CRa

k

LhNu

3/1

4/1

n

n For Turbulent

For Laminar

Page 26: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Vertical Plate at constant Ts

LNuLog10

LRaLog10

Page 27: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

• Alternative applicable to entire Rayleigh number range (for constant Ts)

2

27/816/9

6/1

Pr)/492.0(1

387.0825.0

L

LRa

Nu

Vertical Cylinders

4/1

35 ~

LGrL

D

D

L

D

• Use same correlations for vertical flat plate if:

Page 28: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Free Convection : Vertical Plate

Cold plate or Hot fluidHot plate or Cold fluid

Page 29: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Free Convection from Inclined Plate

Cold plate or Hot fluid

Hot plate or Cold fluid

Page 30: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Horizontal Plate

Cold Plate (Ts < T)

Hot Plate (Ts > T)

Active Upper SurfaceActive Lower Surface

Page 31: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Empirical Correlations : Horizontal Plate

• Define the characteristic length, L asP

AL s

• Upper surface of heated plate, or Lower surface of cooled plate :

1173/1

744/1

1010 15.0

1010 54.0

LLL

LLL

RaRaNu

RaRaNu

• Lower surface of heated plate, or Upper surface of cooled plate :

1054/1 1010 27.0 LLL RaRaNu

Note: Use fluid properties at the film temperature2

TTT s

f

Page 32: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

Empirical Correlations : Long Horizontal Cylinder

• Very common geometry (pipes, wires)

• For isothermal cylinder surface, use general form equation for computing Nusselt #

nDD CRa

k

DhNu

Page 33: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

RaD C n

0.333 0.125 10 - 10

0.250 0.480 10 - 10

0.188 0.850 10 - 10

0.148 1.02 10 - 10

0.058 0.675 10 - 10

127

74

42

22

210

Constants for general Nusselt number Equation

Page 34: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.
Page 35: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.
Page 36: FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.

The End

Terima kasih

EFFICIENCY AND ENERGY CONSERVATION LABORATORY OF DIPONEGORO UNIVERSITY

36