Top Banner
46

Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Jan 28, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebras via a functoron partial algebras

Dion Coumans and Sam van Gool

Topology, Algebra and Categoriesin Logic (TACL)

26 – 30 July 2011Marseilles, France

1 / 16

Page 2: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 3: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 4: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 5: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Logic via algebra

• Algebraic logic L, signature σ, variety VL of σ-algebras

• Studying the logic L! Studying finitely generated freeVL-algebras

LanguageFσ(x1, . . . , xm)

[·]a`L

LogicFVL(x1, . . . , xm)

2 / 16

Page 6: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 7: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 8: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 9: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 10: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

• In many cases, a variety (VL)− of reducts iswell-understood and locally finite, e.g.:

• Modal algebras = Boolean algebras + ^,

• Heyting algebras = Distributive lattices +→,

• . . .

• Regard FVL(x1, . . . , xn) as colimit of a chain of finitealgebras in the reduced signature, and add the additionaloperation(s) step-by-step:

3 / 16

Page 11: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 12: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·T1

T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 13: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·T1

T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1

B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 14: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·

T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1

B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 15: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn· · ·

T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·

B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 16: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·Tn

· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn

· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 17: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language

· · ·

Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·

Bn· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 18: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 19: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

f

ff

· · ·Bn· · ·B1B0

fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 20: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

f

ff

· · ·Bn· · ·B1B0f

ff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 21: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 22: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebra as colimit of a chain

Language· · ·Tn· · ·T1T0

[·]a`L

Logic

fff

· · ·Bn· · ·B1B0fff

• Tn: formulas in variables x1, . . . , xm of rank ≤ n inoperation f

• Bn: L-equivalence classes of formulas in Tn

FVL(x1, . . . , xm) = colimn≥0 Bn

4 / 16

Page 23: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 24: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 25: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 26: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 27: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Research Question

· · ·Bn· · ·B1B0

Can Bn+1 be obtained from Bn by a uniform method?

• Yes, if the variety is defined by pure rank 1 equations[N. Bezhanishvili, Kurz]

• Yes, in some particular cases outside this class: S4 modalalgebras [Ghilardi], Heyting algebras [Ghilardi, N.Bezhanishvili & Gehrke].

• Not always, since logics can be undecidable.

• We give general sufficient conditions under which this ispossible (known cases follow as particular instances).

5 / 16

Page 28: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 29: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 30: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 31: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Partial algebras

• In the chain, Bn+1 is a partial algebra, where the domainof the operation f is Bn.

• The variety V is contained in a category pV of partialalgebras for the variety V.

• A homomorphism h : A → B of partial algebras is afunction which preserves all total operations, andpreserves the partial operation f whenever defined.

• A homomorphism h : A → B is image-total if the image ofh is contained in the domain of fB .

6 / 16

Page 32: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorDefinition

DefinitionA functor F : pV→ pV is free image-total if there is acomponent-wise image-total natural transformation η : 1pV → Fsuch that, for all image-total h : A → B, there exists a uniqueh̄ : FA → B making the following diagram commute:

AηA - FA

B

?

h-

7 / 16

Page 33: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 34: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 35: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 36: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 37: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorMain theorem

TheoremLet η : 1→ F be a free image-total functor and A0 ∈ pV. Let Aω

be the partial algebra-colimit of the image-total chain{ηFn(A0) : Fn(A0)→ Fn+1(A0)}n≥0.If Aω is in V, then Aω is the free total V-algebra over A0.

Proof.Category-theoretic arguments. �

Now, to apply this theorem:

• We construct a free image-total functor for any set ofquasi-equations,

• We give sufficient conditions under which Aω ∈ V.

8 / 16

Page 38: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 39: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 40: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,

• fA : formal elements {fa : a ∈ A }, yielding partial operationa 7→ fa for a ∈ A ,

• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 41: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,

• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 42: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 43: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorConstruction

• Let E be a set of quasi-equations (of rank at most 1)axiomatizing the variety V.

• For A ∈ pV, define

FE(A) := [A + FV−(fA)]/θA

• V−: reduct of V to the signature of total operations,• fA : formal elements {fa : a ∈ A }, yielding partial operation

a 7→ fa for a ∈ A ,• θA : smallest pV-congruence on A + FV−(fA) containing〈fA a, fa〉, for all a ∈ dom(fA ).

• ηA is the composite

A � A + FV−(fA)� FE(A).

9 / 16

Page 44: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorLemma

LemmaFE is a free image-total functor with universal arrow η.Furthermore, if A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω ∈ V.

Proof.Uses universal algebra for partial algebras. �

CorollaryIf A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω is the

free total V-algebra over A0.

10 / 16

Page 45: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorLemma

LemmaFE is a free image-total functor with universal arrow η.Furthermore, if A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω ∈ V.

Proof.Uses universal algebra for partial algebras. �

CorollaryIf A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω is the

free total V-algebra over A0.

10 / 16

Page 46: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free image-total functorLemma

LemmaFE is a free image-total functor with universal arrow η.Furthermore, if A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω ∈ V.

Proof.Uses universal algebra for partial algebras. �

CorollaryIf A0 ∈ pV is such that each componentηFnE(A0) : Fn

E(A0)→ Fn+1

E(A0) is an embedding, then Aω is the

free total V-algebra over A0.

10 / 16

Page 47: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:

• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 48: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:

• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 49: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:

• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 50: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:• KB algebras↔ Sets with a symmetric relation

• Partial KB algebras↔ Sets with an equivalence relation ∼and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 51: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The variety KB

• Signature = ⊥,>,∨,∧,¬,^

• Axioms = Boolean algebras +

^⊥ = ⊥

^(x ∨ y) = ^x ∨ ^y

x ≤ ¬^y → y ≤ ¬^x.

• (Finite) Duality theory:• KB algebras↔ Sets with a symmetric relation• Partial KB algebras↔ Sets with an equivalence relation ∼

and a quasi-symmetric relation R satisfying R ◦ ∼⊆ R

11 / 16

Page 52: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 53: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 54: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 55: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 56: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.

12 / 16

Page 57: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The functor FKB

• By definition, for a partial KB algebra A ,

FKB(A) = [A + FBA(_A)]/θA .

GKB(X)

A

Duality

X

FBA(_A)+

× P(X)

A FBA(_A)+/θA

• Using correspondence theory, one can explicitly calculatea first-order definition of the points in GKB(X ,R ,∼)

• These points are normal forms for KB.12 / 16

Page 58: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for KBFirst steps

X0

p ¬p

GKB(X0)

p ∧ ^p ∧ ^¬p

p ∧ ^p ∧ ¬^¬p

p ∧ ¬^p ∧ ^¬p

p ∧ ¬^p ∧ ¬^¬p

¬p ∧ ^p ∧ ^¬p

¬p ∧ ^p ∧ ¬^¬p

¬p ∧ ¬^p ∧ ^¬p

¬p ∧ ¬^p ∧ ¬^¬p

13 / 16

Page 59: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for KBFirst steps

X0

p ¬p

GKB(X0)

p ∧ ^p ∧ ^¬p

p ∧ ^p ∧ ¬^¬p

p ∧ ¬^p ∧ ^¬p

p ∧ ¬^p ∧ ¬^¬p

¬p ∧ ^p ∧ ^¬p

¬p ∧ ^p ∧ ¬^¬p

¬p ∧ ¬^p ∧ ^¬p

¬p ∧ ¬^p ∧ ¬^¬p

13 / 16

Page 60: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for KB(part of) G2

KB(X0)

14 / 16

Page 61: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 62: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 63: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 64: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

The chain for S4First steps

X0

GS4(X0)

G2S4(X0)

(...)

15 / 16

Page 65: Free algebras via a functor on partial algebraspageperso.lif.univ-mrs.fr/~luigi.santocanale/tacl2011/slides/76.pdf · Free alg’s via functor on partial alg’s Dion Coumans and

Free alg’s viafunctor on

partial alg’s

Dion Coumansand

Sam van Gool

Free algebrastep-by-step

Freeimage-totalfunctor

Application toKB

Free algebras via a functoron partial algebras

Dion Coumans and Sam van Gool

Topology, Algebra and Categoriesin Logic (TACL)

26 – 30 July 2011Marseilles, France

16 / 16