Top Banner
Tailings Ponds Tailings consist of 5 : Water Sand Clay Metals (As, Al, Cr, Cu, Pb, Fe, Ni, Zn) Contaminants 6 Naphthenic acids Unrecovered hydrocarbons Polycyclic aromaGc hydrocarbons What else can be done: Remedia5on We are invesGgaGng the microbial communiGes present in the Oil Sands Process Water (OSPW) for the potenGal applicaGon in bioremediaGon. Specifically aim to harnessing the microbes in biofilms to use in bioreactors. Evalua&ng the Metal Tolerance Capacity of Microbial Communi&es Isolated from the Alberta Oil Sands Process Water The Alberta Oil Sands are one of the largest oil sand deposits in the world. It took unGl 2003 to be considered economically viable. The oil sands have been known as “tar sands” because the oil is found in a tarlike form mixed with sand, making it more difficult and costly to extract 8 . The Extrac5on Process Oil sands are mined via open pit mining. In the 1990s new methods improving efficiency 7 : Trucks loaded with the oil sands, sent to extracGon plant Hot causGc water used to separate crude oil from sand Tailings/wastewater sent to tailings ponds to se\le, overlying water can be recycled http://www.cbc.ca/calgary/features/oilsands/ What is being done: Reclama5on Goal – to return the landscape to natural, sustainable form *Contaminants sGll present in underlying tailings* Why biofilms? Mixed species environmental biofilms have a compeGGve edge 3 : 1. CooperaGve community effort to degrade complex organic molecules 2. ProtecGon from metals present in OSPW 3. Diffusion limitaGons within biofilm create different nutrient tensions 4. Highly adapGve consorGa (Cunningham et al. 2011) FRANKEL, Mathew L., DEMETER, Marc, LEMIRE, Joe, TURNER, Raymond J., University of Calgary, Calgary AB, Canada Methods Bacteria grown under metal stresss using the Calgary Biofilm Device and 96well microGter plates Organisms tested: OSPW mixed species community C. metallidurans (model organism) Confocal Laser Scanning Microscopy (CLSM) StaGsGcal analysis and correlaGons with physiochemical parameters 1. CBC. (2013). CBC Calgary | Features | Oilsands 2020 retrieved on 18 Oct, 2013 from h\p://www.cbc.ca/calgary/features/oilsands/ 2. A. B. Cunningham et al. (2011) Biofilms: The Hypertextbook: Chapter 7 Controlling Biofilms, SecGon 4 Mechanisms of anGmicrobial tolerance in biofilms 3. M. Demeter. (2013) Harnessing oil sands microbial__ communiGes for use in exsitu naphthenic acid bioremediaGon [PowerPoint PresentaGon]. 4. Government of Alberta (2013). Retrieved on 18 Oct 2013 from h\p://oilsands.alberta.ca/FactSheets/Tailings_FSht_Mar_2013_Dm_1.pdf 5. M. D. MacKinnon et al. (2001). "Water Quality Issues Associated with Composite Tailings (CT) Technology for Managing Oil Sands Tailings," Interna9onal Journal of Surface Mining, Reclama9on and Environment 15, no. 4. 6. Allen, E. (2008). ”Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objecGves," Journal of Environmental Engineering and Science 7, no. 2. 7. Oil Shale and Tar Sands ProgrammaGc EIS. (2012). Tar Sands Basics. Retrieved on 18 Oct, 2013 from h\p://ostseis.anl.gov/guide/tarsands/ 8. Woldwatch InsGtute. (2013). Oil Sands: The Costs of Alberta's "Black Gold" | Worldwatch InsGtute . retrieved on 18 Oct, 2013 from h\p://www.worldwatch.org/node/4222 References Results Conclusions Metal toxicity Som acids > borderline acids > hard acids Consistent correla&ons with ΔE 0 ,X m p , pK sp ReflecGon of a metal’s affinity for electrons and ligands Single versus mul& species Stronger correlaGons were observed with the C. metallidurans (except pK sp ) Tolerance values grouped closer by media augment than growth form Highlights importance of growth condiGons when invesGgaGng metalmicrobe interacGons (in vitro vs in situ) [email protected] MIC Y MBIC Y MBIC G MIC G MBIC G MIC G MBIC Y MIC Y 5 5 Value Color Key Ag Te Cd Ni Co Ga Zn Se Mo Fe V Al Pb Mn Ba W Ca Sr Li As Mg Cu Metal ! " # # # # # # # # Rela@ve Toxicity + F HSAB " SoH Acid ! Borderline Acid # Hard Acid OSPW C. metallidurans ! ! ! " ! ! Rela5ve toxicity of metals -20 0 20 40 60 -5 0 5 10 pK sp Log MBIC Y -4 -3 -2 -1 0 1 -10 -5 0 5 10 ΔE 0 Log MBIC Y 4 6 8 10 -10 -5 0 5 10 I 1 Log MBIC Y 1.0 1.5 2.0 -10 -5 0 5 10 X m Log MBIC Y 0.0 0.1 0.2 0.3 -10 -5 0 5 10 σ p Log MBIC Y 0 5 10 15 -10 -5 0 5 10 |Log K OH | Log MBIC Y Typical OSPW consor5a correla5ve profile Metalsulfide solubility product (pK sp ) ElectronegaGvity (X m ) Standard redox potenGals (ΔE 0 ) Pearson’s somness index (σ p ) First ionizaGon energy (I 1 ) Log of the first hydrolysis constants (|Log K OH |) CLSM – OSPW biofilm growth A B C D E F G H BH G BH Y [As] mM 0 2.5 25 250 I J K L M N O P [Cu] mM 0 0.0023 0.023 0.23 Correla5onal disparity between OSPW and single species cultures Introduc5on -20 0 20 40 60 -5 0 5 10 Log OSPW MIC Y -20 0 20 40 60 -5 0 5 10 pK sp Log C. metallidurans MIC Y Fig. 2. Heat map showing relaGve toxicity of metals tested on the OSPW mixed species consorGa and C. metallidurans. The heat map colors represent averages based on values obtained from two to nine trials, where red reflects the most toxic metals and green represents the least toxic. MIC G : Minimum inhibitory concentraGon (MIC) with glucose amendment; MIC Y : MIC with yeast extract amended; MBIC G : minimum biofilm inhibitory concentraGon (MBIC), glucose amended; MBIC Y : MBIC, yeast extract amended. Fig. 1. CLSM 3D images of OSPW biofilms under two metal stressors: one that the consorGa exhibited a relaGvely high tolerance (As, 125 – 250 mM), and another to which a lower tolerance was evident (Cu, 0.4 – 1.6 mM). Contrasts can be seen in biofilm microcolony formaGon from unstressed to inhibitory concentraGons of metal stresses, over several orders of magnitude. Biofilms were grown using the Calgary Biofilm Device (CBD) aerobically (25°C 125 rpm) for six days, with a tailings pond water inoculant, using a minimal salts media (BH) amended with 1gL 1 yeast extract (BH Y ) or glucose (BH G ). Fig. 3. Typical trends seen between physiochemical parameters and OSPW mixed species community metal suscepGbility (MBIC Y shown). Trend lines and 95% confidence bands (do\ed lines) shown on linear regressions that correlate with significance. Fig. 4. Comparison of pK sp vs. MIC Y , where significant correlaGon is evident with the OSPW community (top), and absent with C. metallidurans (bo\om). Filling Stage Intermediate Stage Far Future Stage Cap Water (Athabasca River water, runoff, process water, precipitaGon) Som tailings ConsolidaGng Som tailings ConsolidaGng Som tailings Monitoring Modify management and design as needed Typical lake straGficaGon and ecology hIp://www.pembina.org/images/oilsands/endpitlakecema.png
1

FRANKEL,!Mathew!L.,!DEMETER,!Marc,!LEMIRE,!Joe,!TURNER ...€¦ · FRANKEL,!Mathew!L.,!DEMETER,!Marc,!LEMIRE,!Joe,!TURNER,!Raymond!J.,!University*of*Calgary,*Calgary*AB,*Canada! Methods

Sep 08, 2018

Download

Documents

truongque
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: FRANKEL,!Mathew!L.,!DEMETER,!Marc,!LEMIRE,!Joe,!TURNER ...€¦ · FRANKEL,!Mathew!L.,!DEMETER,!Marc,!LEMIRE,!Joe,!TURNER,!Raymond!J.,!University*of*Calgary,*Calgary*AB,*Canada! Methods

Tailings  Ponds    Tailings  consist  of5:        •  Water                            �      Sand                            �      Clay            Metals  (As,  Al,  Cr,  Cu,  Pb,  Fe,  Ni,  Zn)  •  Contaminants6              Naphthenic  acids    •  Unrecovered  hydrocarbons     Polycyclic  aromaGc  hydrocarbons  

What  else  can  be  done:  Remedia5on  We  are  invesGgaGng  the  microbial  communiGes  present  in  the  Oil  Sands  Process  Water  (OSPW)  for  the  potenGal  applicaGon  in  bioremediaGon.  Specifically  aim  to  harnessing  the  

microbes  in  biofilms  to  use  in  bioreactors.    

Evalua&ng  the  Metal  Tolerance  Capacity  of  Microbial  Communi&es  Isolated  from  the  Alberta  Oil  Sands  Process  Water    

The  Alberta  Oil  Sands  are  one  of  the  largest  oil  sand  deposits  in  the  world.    It  took  unGl  2003  to  be  considered  economically  viable.    The  oil  sands  have  been  known  as  “tar  sands”  because  the  oil  is  found  in  a  tar-­‐like  form  mixed  with  sand,  making  it  more  difficult  and  costly  to  extract8.      

The  Extrac5on  Process    

Oil  sands  are  mined  via  open  pit  mining.  In  the  1990s  new  methods  improving  efficiency7:  •  Trucks  loaded  with  the  oil  sands,  sent  to  extracGon  plant  •  Hot  causGc  water  used  to  separate  crude  oil  from  sand  •  Tailings/wastewater  sent  to  tailings  ponds  to  se\le,    overlying  water  can  be  recycled    

http://www.cbc.ca/calgary/features/oilsands/  

What  is  being  done:  Reclama5on    

Goal  –  to  return  the  landscape  to  natural,  sustainable  form    

*Contaminants  sGll  present  in  underlying  tailings*    

Why  biofilms?  Mixed  species  environmental  biofilms  have  a  compeGGve  edge3:  

1.  CooperaGve  community  effort  to  degrade  complex  organic  molecules  

2.  ProtecGon  from  metals  present  in  OSPW  3.  Diffusion  limitaGons  within  biofilm  create  different  nutrient  

tensions  4.  Highly  adapGve  consorGa  

 

(Cunningham  et  al.  2011)  

FRANKEL,  Mathew  L.,  DEMETER,  Marc,  LEMIRE,  Joe,  TURNER,  Raymond  J.,  University  of  Calgary,  Calgary  AB,  Canada  

Methods  •  Bacteria  grown  under  metal  stresss  using  the  Calgary  Biofilm  Device  and  96-­‐well  microGter  plates  •  Organisms  tested:  

•  OSPW  mixed  species  community  •  C.  metallidurans  (model  organism)  

•  Confocal  Laser  Scanning  Microscopy  (CLSM)    •  StaGsGcal  analysis  and  correlaGons  with  physiochemical  parameters  

1.  CBC.  (2013).  CBC  Calgary  |  Features  |  Oilsands  2020  retrieved  on  18  Oct,  2013  from  h\p://www.cbc.ca/calgary/features/oilsands/  2.  A.  B.  Cunningham  et  al.  (2011)  Biofilms:  The  Hypertextbook:  Chapter  7  Controlling  Biofilms,  SecGon  4  Mechanisms  of  anGmicrobial  

tolerance  in  biofilms  3.  M.  Demeter.  (2013)  Harnessing  oil  sands  microbial__  communiGes  for  use  in  ex-­‐situ  naphthenic  acid  bioremediaGon  [PowerPoint  

PresentaGon].  4.  Government  of  Alberta  (2013).  Retrieved  on  18  Oct  2013  from  h\p://oilsands.alberta.ca/FactSheets/Tailings_FSht_Mar_2013_Dm_1.pdf  5.  M.  D.  MacKinnon  et  al.  (2001).  "Water  Quality  Issues  Associated  with  Composite  Tailings  (CT)  Technology  for  Managing  Oil  Sands  

Tailings,"  Interna9onal  Journal  of  Surface  Mining,  Reclama9on  and  Environment  15,  no.  4.  6.  Allen,  E.    (2008).  ”Process  water  treatment  in  Canada’s  oil  sands  industry:  I.  Target  pollutants  and  treatment  objecGves,"  Journal  of  

Environmental  Engineering  and  Science  7,  no.  2.  7.  Oil  Shale  and  Tar  Sands  ProgrammaGc  EIS.  (2012).  Tar  Sands  Basics.  Retrieved  on  18  Oct,  2013  from  

h\p://ostseis.anl.gov/guide/tarsands/  8.  Woldwatch  InsGtute.  (2013).  Oil  Sands:  The  Costs  of  Alberta's  "Black  Gold"  |  Worldwatch  InsGtute  .  retrieved  on  18  Oct,  2013  from  

h\p://www.worldwatch.org/node/4222  

References  

Results    

Conclusions  Metal  toxicity  Ø  Som  acids  >  borderline  acids  >  hard  acids  Consistent  correla&ons  with  ΔE0,  Xm,  σp,  pKsp      Ø  ReflecGon  of  a  metal’s  affinity  for  electrons  and  ligands  Single  versus  mul&  species  Ø  Stronger  correlaGons  were  observed  with  the  C.  metallidurans  

(except  pKsp)  Tolerance  values  grouped  closer  by  media  augment  than  growth  form  Ø  Highlights  importance  of  growth  condiGons  when  invesGgaGng  

metal-­‐microbe  interacGons  (in  vitro  vs  in  situ)  

[email protected]  

!MICY!!MBICY!MBICG!!MICG!!MBICG!!MICG!MBICY!!MICY!

AgTeCdNiCuCoGaZnSeMoFeVAlPbMnBaWCaSrLiAsMg

3 1 2 4 6 8 5 7

−55

Value

Color Key

Ag!Te!Cd!Ni!

Co!Ga!Zn!Se!Mo!Fe!V!Al!Pb!Mn!Ba!W!Ca!Sr!Li!As!Mg!

Cu!

Metal!

!"!

#!

#!

#!

#!#!

#!

#!#!

Rela@ve!Toxicity!

Ag Te Cd Ni

Cu Co Mo Se Ga Zn Al

Fe V Pb Mn Ba Ca Sr W Li As Mg

1243

−5 5Value

Color Key!+!!!!!!!!!!!F!

HSAB!"!!SoH!Acid!!!!Borderline!Acid!!#!!!Hard!Acid!

AgTeCdNiCuCoGaZnSeMoFeVAlPbMnBaWCaSrLiAsMg

3 1 2 4 6 8 5 7

−5Value

Color K

ey

OSPW! C.#metallidurans#

!

!!

"!

!!

Rela5ve  toxicity  of  metals  

-20 0 20 40 60-5

0

5

10

pKsp

Log

MB

ICY

-4 -3 -2 -1 0 1-10

-5

0

5

10

ΔE0

Log

MB

ICY

4 6 8 10-10

-5

0

5

10

I1

Log

MB

ICY

1.0 1.5 2.0-10

-5

0

5

10

Xm

Log

MB

ICY

0.0 0.1 0.2 0.3-10

-5

0

5

10

σp

Log

MB

ICY

0 5 10 15-10

-5

0

5

10

|Log KOH|

Log

MB

ICY

"typical" OSPW toxicity trends

Typical  OSPW  consor5a  correla5ve  profile  

Metal-­‐sulfide  solubility  product  (pKsp)    ElectronegaGvity  (Xm)    Standard  redox  potenGals  (ΔE0)  Pearson’s  somness  index  (σp)    First  ionizaGon  energy  (I1)    Log  of  the  first  hydrolysis  constants  (|Log  KOH|)    

CLSM  –  OSPW  biofilm  growth  

A$ B$

C$ D$

E$ F$

G$ H$

BHG$BHY$

[As]$m

M$

0$2.5$

25$

250$

I" J"

K" L"

M" N"

O" P"

BHG"BHY"

[Cu]"m

M"

0"0.0023"

0.023"

0.23"

OSPW"

Correla5onal  disparity  between  OSPW  and  single  species  cultures  

Introduc5on  

-20 0 20 40 60-5

0

5

10

pKsp

Log

OSP

W M

ICY

-20 0 20 40 60-5

0

5

10

pKsp

Log

C. m

etal

lidur

ans

MIC

Y

pksp OSPW vs model (big diff in corrolations)

 Fig.  2.  Heat  map  showing  relaGve  toxicity  of  metals  tested  on  the  OSPW  mixed  species  consorGa  and  C.  metallidurans.    The  heat  map  colors  represent  averages  based  on  values  obtained  from  two  to  nine  trials,  where  red  reflects  the  most  toxic  metals  and  green  represents  the  least  toxic.  MICG:  Minimum  inhibitory  concentraGon  (MIC)  with  glucose  amendment;  MICY:  MIC  with  yeast  extract  amended;  MBICG:  minimum  biofilm  inhibitory  concentraGon  (MBIC),  glucose  amended;  MBICY:  MBIC,  yeast  extract  amended.  

Fig.  1.  CLSM  3D  images  of  OSPW  biofilms  under  two  metal  stressors:  one  that  the  consorGa  exhibited  a  relaGvely  high  tolerance  (As,  125  –  250  mM),  and  another  to  which  a  lower  tolerance  was  evident  (Cu,  0.4  –  1.6  mM).  Contrasts  can  be  seen  in  biofilm  microcolony  formaGon  from  unstressed  to  inhibitory  concentraGons  of  metal  stresses,  over  several  orders  of  magnitude.    Biofilms  were  grown  using  the  Calgary  Biofilm  Device  (CBD)  aerobically  (25°C  125  rpm)  for  six  days,  with  a  tailings  pond  water  inoculant,  using  a  minimal  salts  media  (BH)  amended  with  1  g  L-­‐1  yeast  extract  (BHY)  or  glucose  (BHG).        

Fig.  3.  Typical  trends  seen  between  physiochemical  parameters  and  OSPW  mixed  species  community  metal  suscepGbility  (MBICY  shown).    Trend  lines  and  95%  confidence  bands  (do\ed  lines)  shown  on  linear  regressions  that  correlate  with  significance.  

Fig.  4.  Comparison  of  pKsp  vs.  MICY,  where  significant  correlaGon  is  evident  with  the  OSPW  community  (top),  and  absent  with  C.  metallidurans  (bo\om).    

Filling  Stage   Intermediate  Stage   Far  Future  Stage  

Cap  Water  (Athabasca  River  water,  runoff,  process  water,  precipitaGon)  

Som  tailings  ConsolidaGng    Som  tailings  

ConsolidaGng    Som  tailings  

Monitoring  Modify  

management  and  design  as  

needed  

Typical  lake  straGficaGon  and  

ecology  

hIp://www.pembina.org/images/oil-­‐sands/end-­‐pit-­‐lake-­‐cema.png