Top Banner

of 23

FRACTURED RESERVOIRS

Apr 04, 2018

Download

Documents

tassili17
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 FRACTURED RESERVOIRS

    1/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 85

    CONVENTIONAL PRESSUREANALYSIS FOR NATURALLY

    FRACTURED RESERVOIRS WITHTRANSITION PERIOD BEFORE

    AND AFTER THE RADIALFLOW REGIME

    Freddy-Humberto Escobar1*, Javier-Andrs Martinez2 and Matilde Montealegre-Madero3

    1,2,3 Universidad Surcolombiana, Neiva, Huila, Colombia

    e-mail: [email protected] e-mail: [email protected] e-mail: [email protected]

    (Received April 30, 2008; Accepted October 5, 2009)

    It is expected for naturally occurring formations that the transition period of flow from fissures to matrix takes place

    during the radial flow regime. However, depending upon the value of the interporosity flow parameter, this transi-tion period can show up before or after the radial flow regime. First, in a heterogeneous formation which has been

    subjected to a hydraulic fracturing treatment, the transition period can interrupt either the bilinear or linear flow regime.

    Once the fluid inside the hydraulic fracture has been depleted, the natural fracture network will provide the necessary

    flux to the hydraulic fracture. Second, in an elongated formation, for interporosity flow parameters approximated lower

    than 1x10-6, the transition period takes place during the formation linear flow period. It is desirable, not only to appro-

    priately identify these types of systems but also to complement the conventional analysis with the adequate expressions,

    to characterize such formations for a more comprehensive reservoir/well management.

    So far, the conventional methodology does not account for the equations for interpretation of pressure tests under

    the above two mentioned conditions. Currently, an interpretation study can only be achieved by non-linear regression

    analysis (simulation) which is obviously related to non-unique solutions especially when estimating reservoir limits

    and the naturally fractured parameters. Therefore, in this paper, we provide and verify the necessary mathematical

    expressions for interpretation of a vertical well test in both a hydraulically-fractured naturally fractured formation or an

    elongated closed heterogeneous reservoir. The equations presented in this paper could provide good initial guessesfor the parameters to be used in a general nonlinear regression analysis procedure so that the non-uniqueness

    problem associated with nonlinear regression may be improved.

    Keywords: Dual-linear flow regime, radial flow regime, interporosity flow parameter, dimensionless storativity ratio

    Ciencia, Tecnologa y Futuro

    * To whom correspondence may be addressed

  • 7/29/2019 FRACTURED RESERVOIRS

    2/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    86

    Se espera en formaciones naturalmente fracturadas que el periodo de transicin de las fisuras a la

    matriz tome lugar durante el flujo radial. Sin embargo, dependiendo del valor del parmetro de flujo

    interporoso, esta transicin puede ocurrir antes o despus del flujo radial. El primer caso, en una for-

    macin heterognea que ha sido sometida a un tratamiento de fracturamiento hidrulico, la transicin puede

    interrumpir el flujo bilineal o lineal tempranos. Una vez existe deplecin de flujo en la fractura hidrulica,

    ste es restablecido por flujo procedente de la red de fracturas naturales. En el segundo escenario, en una

    formacin alargada, para parmetros de flujo aproximadamente menores a 1x10-6, el periodo de transicin

    ocurre durante el flujo lineal en la formacin. Se desea no solo identificar estos sistemas apropiadamente

    sino complementar la tcnica convencional con las expresiones adecuadas para caracterizar tales formaciones

    de modo que se tenga un manejo ms comprensivo del yacimiento/pozo.

    Hasta ahora, la tcnica convencional no cuenta con las ecuaciones para interpretar pruebas de presin bajo

    las dos condiciones arriba descritas. Actualmente, la nica forma de interpretacin se conduce mediante

    tcnicas de regresin no lineal (simulacin) lo que conlleva a problemas de mltiples respuestas especialmente

    cuando se estiman los lmites del yacimiento y los parmetros del yacimiento naturalmente fracturado. Por

    tanto, en este artculo, se proporcionan y verifican las expresiones matemticas necesarias para interpretar

    pruebas de presin en un pozo vertical tanto en sistemas naturalmente fracturados interceptados por unafractura hidrulica, como en formaciones heterogneas alargadas. Las ecuaciones presentadas en este

    artculo podran proporcionar valores iniciales ms representativos de los parmetros usados en un proce-

    dimiento general de regresin no lineal, de modo que se puedan reducir los problemas de multiplicidad de

    soluciones asociadas con este mtodo.

    Palabras Clave: Rgimen de flujo dual lineal, rgimen flujo radial, parmetro de flujo interporoso, coeficiente de al-

    macenaje adimensionales

  • 7/29/2019 FRACTURED RESERVOIRS

    3/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 87

    4n(n+2)12 = Slab model, 32 = Matchstick model, 60 cubic model

    A Area, (ft2)

    B Oil formation factor, (rb/STB)

    CfD Dimensionless fracture conductivity

    ct

    Compressibility, (1/psi)

    h Formation thickness, (ft)

    hm Matrix block height, (ft)

    kf Fracture bulk permeability, (md)

    kfb Matrix permeability, (md)

    kfwf Fracture conductivity, (md-ft)

    m Slope

    P Pressure, (psi)

    PD Dimensionless pressure

    Pi Initial reservoir pressure, (psi)

    Pwf :HOORZLQJSUHVVXUHSVL

    Pws Well static pressure, (psi)

    q )ORZUDWHEEO'

    rw Well radius, (ft)

    sDL Geometric skin factor due to the convergence of radial to dual- OLQHDURZ

    sL Geometric skin factor due to the convergence of dual-linear to VLQJOHOLQHDURZ

    sr Mechanical skin factor

    T Time, (hr)

    tD Dimensionless time

    tDA Dimensionless time based on reservoir area

    tDxf Dimensionless time based on half-fracture length

    tmax Time corresponding to the maximum pressure derivative of the

    WUDQVLWLRQSHULRGGXULQJHLWKHUELOLQHDURUOLQHDURZUHJLPHKUtmin Time corresponding to the minimum pressure derivative of the

    transition period, (hr)

    xf

    Half-fracture length, (ft)

    YE 5HVHUYRLUZLGWKIW

    WD 'LPHQVLRQOHVVUHVHUYRLUZLGWKIW

    NOMENCLATURE

  • 7/29/2019 FRACTURED RESERVOIRS

    4/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    88

    GREEK

    Change, drop

    t )ORZWLPHKU

    P1hr Pressure drop read at t = 1 hr, (psi)

    Porosity, fraction

    Viscosity, (cp)

    ,QWHUSRURVLW\RZSDUDPHWHUEHWZHHQPDWUL[DQGVVXUHV

    f ,QWHUSRURVLW\RZSDUDPHWHUEHWZHHQK\GUDXOLFIUDFWXUHDQG

    VVXUHV

    Dimensionless storativity (capacity) ratio

    SUFFICES

    BL %LOLQHDURZ

    D Dimensionless

    DA Dimensionless referred to reservoir area

    DLF 'XDOOLQHDURZ

    f )UDFWXUHQHWZRUNVVXUHV

    f+m 7RWDOV\VWHPIUDFWXUHQHWZRUNPDWUL[

    i Initial conditions

    L 6LQJOHOLQHDURZ

    LF 6LQJOHOLQHDURZ

    m Matrix, slope

    max Maximum

    min Minimum

  • 7/29/2019 FRACTURED RESERVOIRS

    5/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 89

    INTRODUCTION

    Recently, Tiab and Bettam (2007) have introduced atechnique to interpret pressure and pressure derivativetests in heterogeneous formations drained by a hydrauli-

    FDOO\IUDFWXUHGYHUWLFDOZHOO$OVRZHDUHDZDUHWKDWDQimportant number of pressure tests are conducted in longDQGQDUURZUHVHUYRLUVZKLFKPD\SRVVHVVKHWHURJHQHRXVQDWXUHZLWKYHU\ORZPDVVWUDQVIHUFDSDFLW\EHWZHHQIUD

    FWXUHQHWZRUNDQGPDWUL[,QWKHUVWFDVHWKHWUDQVLWLRQSHULRGPD\WDNHSODFHEHIRUHWKHUDGLDORZLVGHYHORSHG2QFHWKHX[LQWKHK\GUDXOLFIUDFWXUHGLVGHSOHWHGWKHnaturally occurring fractures fed the hydraulic fracture,

    DOORZLQJWKHGHYHORSPHQWRIWKHWUDQVLWLRQSHULRG,QWKHVHFRQGFDVHWKHSKHQRPHQRQRFFXUVDIWHUUDGLDORZLVYDQLVKHG'XULQJHLWKHUGXDOOLQHDURUOLQHDURZUHJLPHLQWKHIRUPDWLRQWKHIUDFWXUHQHWZRUNXLGLVGHSOHWHGand, then, being reestablished from the matrix, leads

    WRWKHSUHVHQFHRIWKHWUDQVLWLRQSHULRG,QERWKFDVHVthis transition period takes a V shape on the pressureGHULYDWLYHFXUYH

    Among the investigations on pressure tests for elon-

    gated systems during this decade, Escobaret al. (2007a)

    introduced the application of the TDStechnique for cha-

    racterization of long and homogeneous reservoirs presen-

    WLQJQHZHTXDWLRQVIRUHVWLPDWLRQRIUHVHUYRLUDUHDUHVHU-

    YRLUZLGWKDQGJHRPHWULFVNLQIDFWRUV&KDUDFWHUL]DWLRQRI

    pressure tests in elongated systems using the conventional

    PHWKRGZDVSUHVHQWHGE\(VFREDUDQG0RQWHDOHJUHAlso, Escobaret al.ESURYLGHGDZD\WRHVWLPDWHUHVHUYRLUDQLVRWURS\ZKHQUHVHUYRLUZLGWKLVNQRZQLQWKH

    mentioned systems from the combination of information

    REWDLQHGIURPWKHOLQHDUDQGUDGLDORZUHJLPHV

    ,QWKLVZRUNQHZH[SUHVVLRQVWRFRPSOHPHQWWKH

    conventional technique are presented for interpretationRISUHVVXUHWHVWVLQQDWXUDOO\RFFXUULQJIRUPDWLRQVZKHQthe transition period takes place either before of afterWKHUDGLDORZUHJLPH7KHSURSRVHGHTXDWLRQVZHUH

    YHULHGZLWKVHYHUDOH[DPSOHV

    MATHEMATICAL MODEL

    7KHPDLQDVVXPSWLRQVFRQVLGHUHGLQWKLVZRUNDUHD

    slightly compressible aQGFRQVWDQWYLVFRVLW\XLGRZV

    WKURXJKRXWDFRQVWDQWWKLFNQHVVUHVHUYRLUZLWKFRQVWDQWPDWUL[DQGIUDFWXUHSHUPHDELOLW\DQGSRURVLW\WKHZHOOIXOO\SHQHWUDWHV WKHSURGXFLQJ IRUPDWLRQ)ORZ IURPWKHQDWXUDOIUDFWXUHQHWZRUNWRHLWKHUK\GUDXOLFIUDFWXUHRUPDWUL[RFFXUVXQGHUSVHXGRVWHDG\VWDWHFRQGLWLRQV

    1HLWKHUZHOOERUHVWRUDJHQRUJHRPHFKDQLFDOVNLQIDFWRUQRUJUDYLW\HIIHFWVDUHFRQVLGHUHG

    7KHGLPHQVLRQOHVVTXDQWLWLHVDUHGHQHGDV

    The naturally fractured reservoir parameters, di-mensionless storativity (capacity) ratio and interporo-

    VLW\RZLQWURGXFHGE\:DUUHQDQG5RRWZHUH

    GHQHGE\

    THE TRANSITION PERIOD OCCURS BEFORE

    RADIAL FLOW REGIME

    According to Tiab and Bettam (2007) the bilinear

    RZUHJLPHRIDQLWHFRQGXFWLYLW\K\GUDXOLFIUDFWXUH

    LQDKHWHURJHQHRXVIRUPDWLRQLVJRYHUQHGE\

  • 7/29/2019 FRACTURED RESERVOIRS

    6/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    90

    Substituting the dimensionless quantities,Equations.

    1.1, 1.2.c and 1.3 intoEquation 2.1\LHOGV

    For pressure buildup analysis, application of time

    superposition is required, therefore Equation 2.2.a

    EHFRPHV

    The above expressions imply that a Cartesian plot of

    'PYVHLWKHUt0,25 or [(tp

    't)0,25-'t0,25@ZLOO\LHOGDVWUDLJKW

    OLQHZLWKVORSHmBL

    Solving for the fracture conductivity, kf

    wf

    UHVXOWV

    1944,96 mq B2

    kfwfwm(fct (f m kfb h mBL

    (2.4)

    Figure 1 is a plot ofPD

    CfD

    0,5Of

    0,25 versus O tDxf

    /Z,W

    is observed there that during the pseudosteady state

    transition periodPDO

    f0,5\LHOGVDKRUL]RQWDOOLQHGHQHG

    E\7LDEDQG%HWWDPDV

    (2.5)

    ReplacingEquations 1.1 and 1.3 intoEquation 2.5

    and solving forOf

    \LHOGV

    Figure 1. Effect of the dimensionless storativity ratio on the dimensionless pressure behavior

    for a finite-conductivity fracture, after Tiab and Bettam (2007)

  • 7/29/2019 FRACTURED RESERVOIRS

    7/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 91

    Figure 2. Effect of the dimensionless storativity ratio on the dimensionless pressure behavior

    for an infinite-conductivity fracture, after Tiab and Bettam (2007)

    ,

    ,

    ,WLVREVHUYHGIRUWKHUVWELOLQHDURZUHJLPHWKDW

    WKHFXUYHVIRUWKHVDPHLQWHUSRURVLW\RZSDUDPHWHU

    coincide for different values of dimensionless capacityUDWLR6HH)LJXUH$FRUUHODWLRQIRUWKLVOLQH\LHOGV

    Equation 2.7 has a correlation coefficient of

    0,99994583 and should be valid for

    Also, according to Tiab and Bettam (2007), the linear

    RZUHJLPHGXULQJHDUO\WLPHLVJRYHUQHGE\

    Substituting inEquation2.8 the dimensionless quan-

    tities,Equations 1.1 and 1.2.cUHVSHFWLYHO\\LHOGV

    Application of time superposition toEquationD

    OHDGVWR

    Equations 2.9.a and 2.9.b imply that a Cartesian

    SORWRIPYVHLWKHU t0,5 or [(tp

    t)0,5t0,5@ZLOO\LHOGD

    VWUDLJKWOLQHZLWKVORSHmL

    Solving for the fracture conductivity,xfUHVXOWV

    Figure 2 is a plot ofPD

    f0,5YHUVXVftDxf/w$VSRLQWHG

    out by Tiab and Bettam (2007), it is observed that during

  • 7/29/2019 FRACTURED RESERVOIRS

    8/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    92

    the pseudosteady state transition period PDf0,5 is a

    KRUL]RQWDOOLQH

    Substituting for the dimensionless term, Equation

    1.1DQGVROYLQJIRUfUHVXOWV

    1RWLFHWKDWIRUWKHUVWOLQHDURZWKHOLQHVIRUWKHVDPHLQWHUSRURVLW\RZSDUDPHWHUFRLQFLGHIRUGLIIHUHQWYDOXHVRIVWRUDWLYLW\FRHIFLHQWUDWLR$FRUUHODWLRQIRUWKLVOLQH\LHOGV

    ,

    Equation 2.14 has a correlation coefficient of

    0,999971228 and should be valid for

    Finally, Tiab and Bettam (2007) found that thepressure derivative displays a maximum pressureonce the transition period begins, and a minimum

    SRLQW GXULQJ WKH WUDQVL WLRQ SHULRG ,I WKH VH SRLQWVare feasible of being obtained, the dimensionlessstorativity ratio can be estimated for bilinear andOLQHDUIORZUHJLPHUHVSHFWLYHO\E\

    THE TRANSITION PERIOD OCCURS AFTER

    RADIAL FLOW REGIME

    ,Q HORQJDWHG UHVHUYRLUV ZKHUHWKH PDVV WUDQVIHUEHWZHHQ PDWUL[ DQG IUDFWXUHV LV GHOD\HG GXH WR YHU\ORZLQWHUSRURVLW\RZSDUDPHWHUVOHVVWKDQ[-7, theWUDQVLWLRQSHULRGWDNHVSODFHVRQFHUDGLDORZUHJLPHKDVYDQLVKHG(LWKHUGXDOOLQHDURUVLQJOHOLQHDURZregime may be interrupted by the transition period in

    ZKLFKWKHIUDFWXUHQHWZRUNLVIHGE\WKHPDWUL[)RUWKHFDVHRIWUDQVLHQWUDWHDQDO\VLVWKLVEHKDYLRUPD\VKRZup during the late pseudosteady state period, though

    Figure 3 displays a semilog plot of the dimension-

    less pressure, times the square-root of the interporosityRZSDUDPHWHUYHUVXVGLPHQVLRQOHVVWLPHIRUGLIIHUHQWGLPHQVLRQOHVVFDSDFLW\UDWLRV7KLVSORWFDQSURYLGHEHWWHUGHWDLOWKDQWKHSXUHGLPHQVLRQOHVVSUHVVXUHSORWV$Vexpected, an early linear trend is observed indicating theLQQLWHWUDQVLHQWEHKDYLRU$IWHUZDUGVWKHGXDOOLQHDURZUHJLPHDSSHDUV+RZHYHUSDUWRILWLVREVFXUHG

    E\WKHUDGLDORZUHJLPH'XULQJWKHODWHSVHXGRVWHDG\state period, all the lines for different dimensionlessVWRUDWLYLW\UDWLRVFRLQFLGHIRUHDFKLQWHUSRURVLW\RZ

    SDUDPHWHU

    Figure 4 is a semilog plot of the dimensionless pres-

    sure versus dimensionless time for different values of theLQWHUSRURVLW\RZSDUDPHWHUDQG VWRUDWLYLW\FRHIFLHQWUDWLRV3DUWRIWKHWUDQVLWLRQSHULRGLVVKRZQLQWKHSORW,WLVREVHUYHGWKDWWKHOLQHVIRUWKHVDPHVWRUDWLYLW\FRHI-cient ratio coincide for the same value of the interporosityRZSDUDPHWHU$FRUUHODWLRQEHWZHHQ and the inter-FHSWRIWKHVHPLORJSORWKDVDFRUUHODWLRQFRHIFLHQWRI0,99999872 and a standard deviation of 3,2973259x10-57KHUDQJHRIDSSOLFDWLRQRIWKLVFRUUHODWLRQLVDQGsr7KLVLVJLYHQEHORZDV

    $VVKRZQLQ)LJXUH WKHLQWHUFHSWRIWKHVHPLORJ

    SORWLVDGLUHFWIXQFWLRQRIWKHVNLQIDFWRU7KHFRUUHODWLRQ

    EHWZHHQVNLQIDFWRUDQGWKHLQWHUFHSWLVVKRZQLQ)LJXUH

    Equation 3.1DOUHDG\LQFOXGHVWKLVHIIHFW

    7KHLQWHUSRURVLW\RZSDUDPHWHUFDQEHDSSUR[L -mated by the equation provided by Tiab and Escobar

  • 7/29/2019 FRACTURED RESERVOIRS

    9/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 93

    The Transition Period Occurs During The Dual-

    Linear Flow Regime

    Escobaret al. (2009) presented the governing equa-

    WLRQIRUGXDOOLQHDURZUHJLPHLQDQDWXUDOO\IUDFWXUHG

    UHVHUYRLU

    (3.3)P 2ptD

    WDw+SDLD

    After replacing the dimensionless quantities in the

    DERYHH[SUHVVLRQLW\LHOGV

    For pressure buildup analysis, application of time super-

    position is required, thereforeEquation 3.4EHFRPHV

    Figure 3. Semilog plot of dimensionless pressure times the square-root of the interporosity flow parameter versus dimensionlesstime for different dimensionless storativity ratios without wellbore storage Well centered in the reservoir

    Figure 4. Semilog plot of dimensionless pressure versus dimensionless time for different values of the interporosityflow parameter and storativity coefficient ratios - Well centered in the reservoir

  • 7/29/2019 FRACTURED RESERVOIRS

    10/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    94

    Figure 5. Semilog plot of dimensionless pressure versus dimensionless time for = 0,01 and = 1x10-8

    with different mechanical skin factors - Well centered in the reservoir

    Figure 6. Relationship between the dimensionless pressure with the mechanical skin factors,

    for = 0,01 and = 1x10-8 - Well centered in the reservoir

  • 7/29/2019 FRACTURED RESERVOIRS

    11/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 95

    Equations 3.4 and 3.5 indicate that a Cartesian plot of

    PYVHLWKHUt0,5 or [(tpt)0,5-t0,5@ZLOO\LHOGDVWUDLJKWOLQHGXULQJGXDOOLQHDURZEHKDYLRUZKLFKVORSHmDLF,

    and intercept, bDLFDUHXVHGWRREWDLQUHVHUYRLUZLGWK

    YERQFHWKHVWRUDWLYLW\FRHIFLHQWUDWLRLV GHWHUPLQHG

    and dual-linear skin factor,sDL

    Linear-Flow Regime Occurs After The Transition

    Period

    Once the transition period disappears, the reservoir

    EHKDYHV DV KRPRJHQHRXVWKHQWKHVLQJOHOLQHDURZ

    UHJLPHDSSHDUVZKLFKJRYHUQLQJHTXDWLRQV IRU SUH

    ssure and pressure derivative presented by Escobaret al.

    DDQG(VFREDUDQG0RQWHDOHJUHDUH

    ReplacingEquations 1.1, 1.2.aand 1.4 into the above

    H[SUHVVLRQUHVXOWV

    (3.9)DPwf14,407 qB

    YE h

    m

    ctfkf b

    0,5

    t+141,2q Bm

    kfhSL

    and for buildup pressure tests Equation 3.9 be-

    FRPHV

    This implies that a Cartesian plot ofPYVHLWKHUt0,5 or

    [(tp+t)0,5- t0,5@ZLOO\LHOGDVWUDLJKWOLQHGXULQJGXDO

    OLQHDURZEHKDYLRUZKLFKVORSHmLF, and intercept,

    bLFDUHXVHGWRREWDLQUHVHUYRLUZLGWKYE, once theVWRUDWLYLW\ FRHIFLHQW UDWLR LV GHWHUPLQHG DQGOLQHDU

    skin factor, SL

    Linear-Flow Regime Occurs Before The Transition

    Period

    According to Escobaret al.WKLVFDVHZKLFK

    LVGHVFULEHGE\)LJXUHVDQGKDVWKHIROORZLQJJRYHU

    QLQJHTXDWLRQ

    Once the dimensionless quantities are replaced in

    Equation 3.13WKHIROORZLQJH[SUHVVLRQLVREWDLQHG

    For pressure buildup analysis, application of time super-

    position is required, thereforeEquation 3.14EHFRPHV

    This implies that a Cartesian plot ofPYVHLWKHUt0,5 or

    [(tpt)0,5-t0,5@ZLOO\LHOGDVWUDLJKWOLQHGXULQJOLQHDURZ

    EHKDYLRUZKLFKVORSHmLF

    , and intercept, bLF, are used to

    REWDLQUHVHUYRLUZLGWKYERQFHWKHVWRUDWLYLW\FRHIFLHQW

    ratio is determined and single-linear skin factor, SL

  • 7/29/2019 FRACTURED RESERVOIRS

    12/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    96

    1.E-04

    1.E-03

    1.E-02

    1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

    09

    10

    10

    110

    710

    310

    -

    -

    -

    Pseudosteady

    state

    Dual-linear

    flow regime

    Single-linear

    flow regimeTransition

    PeriodRadial

    flow regime

    0,03

    0,06

    0,09

    w

    l

    P*

    D

    l0,25

    Figure 7. Log-log plot of dimensionless pressure times the square-root of the interporosity flowparameter versus dimensionless time for different values of interporosityflow parameter and storativity ratios - Well off-centered in the reservoir

    Figure 8. Log-log plot of dimensionless pressure versus dimensionless time for different values of the dimensionless

    storativity ratio and = 1x10-8, presence of homogeneous single-linear flow Well off-centered in the reservoir

  • 7/29/2019 FRACTURED RESERVOIRS

    13/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 97

    EXAMPLES

    Synthetic Example 1

    $V\QWKHWLFSUHVVXUHWHVWIRUDZHOOLQDQLQQLWH

    UHVHUYRLUZDVJHQHUDWHGE\7LDEDQG%HWWDP

    ZLWKLQIRUPDWLRQIURP7DEOH&KDUDFWHUL]HWKLVK\-

    SRWKHWLFUHVHUYRLUXVLQJFRQYHQWLRQDODQDO\VLV

    Solution

    ,QWKLV H[DPSOH WKHELOLQHDURZ UHJLPHRFFXUVEHIRUHWKHWUDQVLWLRQSHULRG)URP)LJXUHZHUHDGDvalue ofP1hr= 101,5 psi, tmin = 0,095 hr, tmax = 0,0073hr, and PpssSVL9DOXHVRImBL = 96,96 psi/hr areUHDGIURP)LJXUH7KHFDOFXODWLRQVDUHVXPPDUL]HG

    EHORZ

    Table 1. Summary of results for synthetic example 1

    Synthetic Example 2

    $VLPXODWHGSUHVVXUHWHVWIRUDZHOOLQDQLQQLWH

    resHUYRLUZDVJHQHUDWHGIRUWKLVZRUNZLWKLQIRUPDWLRQ

    IURP7DEOH8VHFRQYHQWLRQDODQDO\VLVWRLQWHUSUHWWKLV

    ZHOOSUHVVXUHWHVW

    Solution

    ,QWKLVH[DPSOHWKHOLQHDURZUHJLPHRFFXUVEHIRUHWKHWUDQVLWLRQSHULRG)URP)LJXUHZHUHDGDYDOXH

    ofP1hr= 492,0 psi, tmax = 0,0072 hr and Ppss = 82,0SVL9DOXHVRImLSVLKUDUHUHDGIURP)LJXUH

    $VXPPDU\RIUHVXOWVLVJLYHQEHORZ

    Table 2. Summary of results for synthetic example 2

    Synthetic Example 3

    7KHVHPLORJSORWRIDVLPXODWHGGUDZGRZQJHQHU-

    DWHGZLWKWKHLQIRUPDWLRQRI7DEOHSUHVHQWHGE\(V-

    cobaret al.LVUHSRUWHGLQ)LJXUH&KDUDFWHUL]H

    WKLVK\SRWKHWLFUHVHUYRLUXVLQJFRQYHQWLRQDODQDO\VLV

    SolutionFrom Figure 13, P1hrSVLLVUHDG9DOXHV

    ofmDLF = 36,36 psi/hr and bDLF = 346,36 psi are readIURP)LJXUH7KHFRPSXWDWLRQVDUHVXPPDUL]HGDQG

    UHSRUWHGDVIROORZV

    Table 3. Summary of results for synthetic example 3

  • 7/29/2019 FRACTURED RESERVOIRS

    14/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    98

    Figure 9. Log-log plot of pressure drop vs. t for synthetic example 1

    Figure 10. Cartesian plot of pressure drop vs. t0,25 for synthetic example 1

  • 7/29/2019 FRACTURED RESERVOIRS

    15/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 99

    Figure 11. Log-Log plot of pressure drop vs. t for synthetic example 2

    Figure 12. Cartesian plot of pressure drop vs. t0,5 for synthetic example 2

  • 7/29/2019 FRACTURED RESERVOIRS

    16/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    100

    Synthetic Example 4

    $V\QWKHWLFSUHVVXUHWHVWIRUDZHOORIIFHQWHUHGLQ

    DUHVHUYRLUZDVDOVRJHQHUDWHGE\(VFREDUet al. (2009)

    ZLWKLQIRUPDWLRQIURP7DEOH7KHSUHVVXUHDQGSUH

    VVXUHGHULYDWLYHSORWLVSURYLGHGLQ)LJXUH,WLVUH -

    quired to estimate the geometric skin factors, reservoirZLGWKDQGWKHQDWXUDOO\IUDFWXUHGUHVHUYRLUSDUDPHWHUV

    Solution

    From Figure 15, it is read a value ofP1hr = 409,703

    SVL9DOXHVRImDLF= 133,68 psi/hr, bDLF= 314,81, mLF=201,55 psi/hr and bLF= 211,77 psi are read from Figure

    7KHFRPSXWDWLRQVDUHVXPPDUL]HGDQGUHSRUWHGDV

    IROORZV

    Table 4. Summary of results for synthetic example 4

    Figure 13. Semilog plot of pressure drop vs. time for synthetic example 3

  • 7/29/2019 FRACTURED RESERVOIRS

    17/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 101

    Figure 14. Cartesian plot of pressure drop vs. t0.5 for synthetic example 3

    Figure 15. Semilog plot of pressure drop vs. time for synthetic example 4

  • 7/29/2019 FRACTURED RESERVOIRS

    18/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    102

    Figure 16. Cartesian plot of pressure drop vs. t 0,5 for synthetic example 4

    Field Example

    Escobaret al. (2009) also reported an example taken

    IURPDSUHVVXUHWHVWUXQLQD6RXWK$PHULFDQZHOO

    5HVHUYRLUXLGDQGZHOOSDUDPHWHUVDUHSURYLGHGLQ

    7DEOHDQGWKHSUHVVXUHGDWDLVSURYLGHGLQ)LJXUH

    7KHUHVHUYRLUSHUPHDELOLW\RIPGZDVREWDLQHG

    IURPDSUHYLRXVWHVW)LQGUHVHUYRLUZLGWKJHRPHWULF

    VNLQIDFWRULQWHUSRURVLW\ RZSDUDPHWHU DQGWKHGL-

    PHQVLRQOHVVVWRUDWLYLW\FRHIFLHQW

    Solution

    ,QWKLVH[DPSOHWKHVLQJOHOLQHDURZUHJLPHRFFXUV

    DIWHUWKHWUDQVLWLRQSHULRG6LQFHSHUPHDELOLW\LVNQRZQ

    the semilog slope can be found from the classical con-YHQWLRQDO HTXDWLRQJLYLQJD YDOXH RI SVLF\FOH

    Then,P1hr= 21,16 psi is obtained using any point on the

    UDGLDORZUHJLPHVWUDLJKWOLQHIURP)LJXUH9DOXHVRI

    mDLF= 35,87 psi/hr, bDLF= 8,47, mLF= 18,55 psi/hr and

    bLFSVLDUHUHDGIURP)LJXUH7KHFRPSXWD-

    WLRQVDUHVXPPDUL]HGDQGUHSRUWHGDVIROORZV

    Table 5. Summary of results for synthetic example 5

    COMMENTS ON THE RESULTS7KH V\QWKHWLFH[DPSOHV DUH VKRZQ WRYHULI\ WKH

    LQWURGXFHGHTXDWLRQVIRUWKHFRQYHQWLRQDOWHFKQLTXH$JRRGDJUHHPHQWLVREVHUYHGEHWZHHQWKHUHVXOWVREWDLQHGin this study and those from the simulation input orRWKHUVRXUFHV+RZHYHUWKHUHVXOWVRIWKHHOGH[DPSOHVKRZHGGLVDJUHHPHQWWRVRPHH[WHQWSUREDEO\GXHWRWKHQRLV\GDWDDVZHOODVWKHDFFXUDF\RIWKHFRUUHODWLRQV

  • 7/29/2019 FRACTURED RESERVOIRS

    19/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 103

    Figure 17. Semilog plot of pressure drop vs. time for the field example

    Figure 18. Cartesian plot of pressure drop vs. t0.5 for the field example

  • 7/29/2019 FRACTURED RESERVOIRS

    20/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    104

    Table 6. Data used for the simulation runs and examples

    CONCLUSION

    1HZHTXDWLRQVIRUWKHFODVVLFDOFRQYHQWLRQDOPHWKRG

    are introduced to characterize oil bearing heteroge-

    QHRXVIRUPDWLRQZKHQWKH WUDQVLWLRQ SHULRGWDNHV

    SODFHRXWVLGH WKHUDGLDO RZUHJLPH7KHHTXDWLRQ

    provided by Tiab and Escobar (2003) to determine

    WKHLQWHUSRURVLW\RZSDUDPHWHULQLWLDOO\GHYHORSHG

    IRUWUDQVLWLRQSHULRGGXULQJWKHUDGLDORZUHJLPH

    has been found to provide good results for hetero-

    JHQHRXVIRUPDWLRQVZKHQWKHWUDQVLWLRQSHULRGWDNHV

    SODFHEHIRUHRUDIWHUWKHUDGLDORZUHJLPH

    ACKNOWLEDGMENTS

    7KHDXWKRUVJUDWHIXOO\DFNQRZOHGJHWKHQDQFLDO

    VXSSRUWRI8QLYHUVLGDG6XUFRORPELDQDIRUWKHFRPSOH -

    WLRQRIWKLVVWXG\

    REFERENCES

    (VFREDU)++HUQDQGH]'36DDYHGUD-$

    Pressure and pressure derivative analysis for long

    naturally fractured reservoirs using the tds technique.

    Article sent to the Dyna Journal to request publica-

    tion.

    (VFREDU)++HUQiQGH]

  • 7/29/2019 FRACTURED RESERVOIRS

    21/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009 105

    7LDE'(VFREDU)+'HWHUPLQDFLyQGHOSDUiPH

    WURGHXMRLQWHUSRURVRDSDUWLUGHXQJUiFRVHPLORJDUtW

    PLFRX Congreso Colombiano del Petrleo (Colombian

    3HWUROHXP6\PSRVLXP%RJRWi&RORPELD

    7LDE'%HWWDP

  • 7/29/2019 FRACTURED RESERVOIRS

    22/23

    CT&F - Ciencia, Tecnologa y Futuro - Vol. 3 Nm. 5 Dic. 2009

    FREDDY-HUMBERTO ESCOBAR et al.

    106

  • 7/29/2019 FRACTURED RESERVOIRS

    23/23

    CONVENTIONAL PRESSURE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS