Top Banner
RETRIEVING BRDF OF DESERT USING TIME SERIES OF MODIS IMAGERY Haixia Huang, Bo Zhong, Qinhuo Liu, and Lin Sun Presented by Bo Zhong [email protected] Institute of Remote Sensing Applications, Chinese Academy of Sciences IGRSS 2011, Vancouver , Canda
28
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: FR3.TO5.4.pptx

RETRIEVING BRDF OF DESERT USING TIME SERIES OF MODIS IMAGERY

Haixia Huang, Bo Zhong, Qinhuo Liu, and Lin Sun

Presented by Bo Zhong

[email protected]

Institute of Remote Sensing Applications, Chinese Academy of Sciences

IGRSS 2011, Vancouver , Canda

Page 2: FR3.TO5.4.pptx

Outline

Background

Methodology

Preliminary results

Applicatoins

Conclusions

Page 3: FR3.TO5.4.pptx

Background

BRDF is the key parameter for:

Quantitative remote sensing

Erath radiation budget

More

Desert is one of the main landcover types

Strongly reflecting the solar radiation

More

Page 4: FR3.TO5.4.pptx

Problem

• There is no “good” BRDF product of desert

Page 5: FR3.TO5.4.pptx

Methodology-flowchartMODIS imagery

Converting DN to TOA reflectance

Identifying the “clearest” of each

observations

Retrieving reflectance of “clearest”

observations

Fitting to Staylor-Suttles BRDF

model

Lookup Tables

BRDF of desert

Page 6: FR3.TO5.4.pptx

Methodology- site choosing

Location of the experimental site(MODIS imagery color composite)

Cole view of the site(TM imagery color composite)

Page 7: FR3.TO5.4.pptx

Methodology- site choosing

It is stable, so it can be seen as an invariant

object;

There are a lot of lakes within the calibration

site, which are seldom polluted, so the lowest

AOD of calibration site can be determined by

Dark Object (DO) method using Landsat TM

and ETM+ data.

Page 8: FR3.TO5.4.pptx

8

(a)Mar. 3, 2000 (b)Feb. 3, 2010

Methodology- site choosing

Page 9: FR3.TO5.4.pptx

AOD retrieval using DO method

40 60 80 1000

1

2

3

Aerosol

opti

cal

depth

Apparent radiance(w/m2/sr/mic)

Aerosol optical depth and radiance curve

Corresponding path radiance and aerosol optical depth

52.87

0.43

ETM+

imaging

date

Aerosol

optical

depth

TM

imaging

date

Aerosol

optical

depth

2000.03.03 0.1543 2006.09.20 0

2000.04.29 0 2006.10.31 0.0440

2001.10.16 0.0218 2007.05.18 0.1536

2001.11.17 0 2007.06.03 0

2002.01.04 0.0657 2009.06.17 0.4279

2002.03.18 0.2801 2009.08.11 0.05444

2002.05.28 0.3274 2009.08.27 0.0043

2002.09.17 0.1058 2009.09.28 0.0096

2002.11.04 0.3633 2010.02.03 0.07676

2002.11.13 0.0286 2010.06.04 0.254

2002.12.15 0.1195 2010.07.29 0.3552

2003.03.28 0.4273 2010.08.14 0

2010.08.23 0.2178

Page 10: FR3.TO5.4.pptx

Original method

Time series of

MODIS imagery

Identifying clear

pixels

Reflectance of

clear pixels

BRDF fitting

Reflectance of

hazy pixels

AOD of hazy

pixels

LUT

MODIS surface

reflectance

Page 11: FR3.TO5.4.pptx

Modifications for the original method

AOD determination for the “clearest” days;

Shrinking the use of the algorithm from globe to the

desert calibration site, which is stable;

Identifying the “clearest” observations for every 10

degrees in view zenith angles from 0-50 degree (0-10, 11-

20, 21-30, 31-40, and 41-50);

Using Staylor-Suttles BRDF model instead of Walthall BRDF.

Page 12: FR3.TO5.4.pptx

MODIS-B3: Staylor-Suttles coefficients

Preliminary results

Page 13: FR3.TO5.4.pptx

MODIS-B1: Staylor-Suttles coefficients

Page 14: FR3.TO5.4.pptx

MODIS-B2: Staylor-Suttles coefficients

Page 15: FR3.TO5.4.pptx

Comparison with MODIS products

Page 16: FR3.TO5.4.pptx

R2 much higher

RMSE is lower

Page 17: FR3.TO5.4.pptx

Applications I: inter-calibration of AVHRR using retrieve BRDF

Spectral matching of AVHRR and MODIS

AVHRR data simulation using the new method

Inter-calibration

Validation

Page 18: FR3.TO5.4.pptx

Spectral matching

AVHRR 1 (0.645 μm) AVHRR 2 (0.865 μm) AVHRR 3 (1.6 μm)

ai 0.9885 1.0105 1.0004

Page 19: FR3.TO5.4.pptx
Page 20: FR3.TO5.4.pptx

Applications II: global desert BRDF retrieval

Mapping of the desert

BRDF and AOD retrieval simultaneously using

the new method

Preliminary validation

Page 21: FR3.TO5.4.pptx

The chosen desert sites

Page 22: FR3.TO5.4.pptx

The geolocations of the deserts

Desert

Name

Lat(°) Lon(°) Altitude

(m)

Duration

(yyyy.mm.d)

Taklimakan 39.0°N-40°N 84°E-85°E 1050 2009.10.1-

210.10.1

Rabal-

Khali

18.8°N-19.8°N 45.5°E-46.5°E 700 2009.10.1-

210.10.1

Lybia 24°N-25°N 12°E-13°E 740 2009.10.1-

210.10.1

Sahara 19.5°N-20.5°N 8°W-9°W 260 2009.10.1-

210.10.1

Page 23: FR3.TO5.4.pptx

Taklimakan desert

Page 24: FR3.TO5.4.pptx

Rabal-Khali desert

Page 25: FR3.TO5.4.pptx

Lybia desert

Page 26: FR3.TO5.4.pptx

Sahara desert

Page 27: FR3.TO5.4.pptx

Conclusions

The new method is able to catch the BRDF

characterization of deserts

This method can be used for inter-calibration of

reflective bands of moderate satellite data like

AVHRR

This method is helpful for researches on earth

radiation budget

Page 28: FR3.TO5.4.pptx

Thank you for your attention!