Top Banner
Fourier Integrals Fourier Integrals Nonperiodic waves Fourier Integrals
42

Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Sep 06, 2018

Download

Documents

buicong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier IntegralsFourier Integrals

Nonperiodic wavesFourier Integrals

Page 2: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Nonperiodic waves

• In optics and quantum mechanics all real waves are pulses.

• In order to generate a pulse out of harmonic functions that have a certain width and shape, we need to know

what frequency elements to add– what frequency elements to add– How much of each frequency element to add

2PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 3: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Addition of waves: different frequencies

[ ]2

012 cos cos1To generate beats we added two frequencies and

m mE E k x t kx t

ω ω

ω ω⎡ ⎤= − × −⎣ ⎦

( )1 212

the carrier frequency is average of the added frequencies

1) If we add more frequency elements symmetrically

ω ω ω

⎣ ⎦

= +

around then1) If we add more frequency elements symmetrically

2)

around , then

will not change. If we reduce the spacing between the frequency elements, then

ω

ω

( )1 2

)12

p g q y ,

frequency of modulation will decrease. This is the

frequency of the envelope meaning the b

mω ω ω= −

eats will have more separationfrequency of the envelope meaning the b

m

eats will have more separation.3) When number of frequency elements go to infinity, we will have a single pulse. The goes to infinity.λ

3

m

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 4: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Beats with different frequency intervals

0 5

1

1.5

2Superposition of two waves

0 5

1

1.5

2Superposition of two waves

-1

-0.5

0

0.5

Am

plitu

de

-1

-0.5

0

0.5

Am

plitu

de

Δλ=30 Δλ=60

2Superposition of two waves

0 1 2 3 4 5 6

x 10-5

-2

-1.5

Distance0 1 2 3 4 5 6

x 10-5

-2

-1.5

Distance

2Superposition of two waves

0.5

1

1.5

2

de

Δλ=10 0.5

1

1.5

2

e Δλ=1

-1.5

-1

-0.5

0

Am

plitu

-1.5

-1

-0.5

0

Am

plitu

d Δλ 1

4

0 1 2 3 4 5 6

x 10-5

-2

Distance 0 1 2 3 4 5 6

x 10-5

-2

5

Distance

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 5: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Square Wave0.5

1

1.5

f(x)

Square wave; time domain−λ/4 λ/4

1 - / /( ) { a x af x λ λ+ < ≤=

For the following square wave even

λ=1

-0.5 0 0.5 1 1.5 2-0.5

0

x

fde

Square wave; frequency domain

/ 3 /( ) {

2 4 2( ) sin cos( )

a x af x

mf x c mkx

λ λ

π

< ≤

=

⎛ ⎞= + ⎜ ⎟⎝ ⎠

0 evenThe Fourier components are

0

0.2

0.4

0.6

coef

ficie

nts

ampl

itud

4π 8π

1( ) ( )

mf

a a a=⎜ ⎟⎝ ⎠

∑Frequency spectrum is amplitude

of each frequency co ( )f xmponent in

1

1.5Square wave; time domain

0 10 20 30 40 50 60 70 80 90-0.2

mk

Four

ier c

−λ/8 λ/8

vs. k. It expresses weighing factors

of each harmonic component at any spatial frequency present in

λ=2

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-0.5

0

0.5f(x)

any spatial frequency present in the synthesis. Let's keep width of the peaks constant

x

0.2

0.4

ents

am

plitu

de

Square wave; frequency domainwhile increasing the wavelength.

Zeros of the sinc function happenat constant mk. As k gets smaller

50 10 20 30 40 50 60 70 80 90

0

mk

Four

ier c

oeffi

ci

4π 8πbecause of large wavelength, m, the number of harmonics gets larger.

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 6: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Frequency spectrum f l

0.5

1

1.5

f(x)

Square wave; time domain λ=4

of a pulse-2 -1 0 1 2 3 4 5 6

-0.5

0

x

de

Square wave; frequency domain

−λ/16 λ/16

As we increase the separation

0

0.1

0.2

coef

ficie

nts

ampl

itu

4π 8π

pbetween the pulses, the Fourier components get closer in the frequency space.

1

1.5Square wave; time domain

0 10 20 30 40 50 60 70 80 90

0

mk

Four

ier

−λ/32 λ/32

λ=8As the wavelength goes to infinity, the wave gets closer to

i f l th F i

-4 -2 0 2 4 6 8 10 12 14 16-0.5

0

0.5

1

f(x)expression of a pulse, the Fourier

components get closer and leading to a continuum.

4 2 0 2 4 6 8 10 12 14 16x

0.05

0.1

ents

am

plitu

de

Square wave; frequency domainAt the limit we have a pulse in time domain and a continuous Fourier series in frequency

60 10 20 30 40 50 60 70 80 90

0

0.05

mk

Four

ier c

oeffi

ci

4π 8πFourier series in frequency domain known as Fourier integral

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 7: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier Transforms

( ) cos( ) sin( )f x A mkx B mkx

λ

λ∞ ∞

→∞ →

→ = +∑ ∑

As or k 0 the Fourier series transforms to Fourier integrals

Finite0 0

0

( ) cos( ) sin( )

( ) lim cos( ) sin( )

m mm m

m mk

f x A mkx B mkx

f x A mkx k B mkx k

λ

λ

= =

∞ ∞

→ +

⎛ ⎞→ = Δ + Δ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

Finite

Infinite 0 0 0

( )

k m m

f xλ

→= =

⎜ ⎟⎝ ⎠

→ =

∑ ∑

Infinite ( ) ( )1 cos( ) sin( )A k kx dk B k kx dk∞ ∞⎡ ⎤

+⎢ ⎥⎣ ⎦∫ ∫( ) ( )0 0π ⎢ ⎥⎣ ⎦∫ ∫

Using the orthognality of sine and cosine functions we can find:

( ) ( ) cos( ) ; ( ) ( )sin( )A k f x kx dx B k f x kx dx∞ ∞

−∞ −∞

= =∫ ∫

7

( ) ( )A k B k and are called Fourier cosine and sine( ).f x

transforms of the function

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 8: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Complex representation of the Fourier transformstransforms

( )1( ) ikxf x F k e dk∞

−= ∫ ( )( )2

( ) ( ) ikx

f x F k e dk

F k f x e dx

π −∞

=

=

∫( ) ( )

( ) ( )

F k f x e dx

F k f x−∞

= ∫The function is spoken of as the Fourier transform of

( ){ }( ) ( ) ( )F k A k iB k f x= + =

The sine and cosine transforms are:

F

( ){ } ( ){ } ( ){ }Cf x f x i f x= +

And inverse Fourier transfoSF F F

( )F krm of is:

8

( ){ }1

( )

( )f x F k−= FPHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 9: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Two dimensional Fourier Transform

( ) ( )2

1( , ) ,(2 )

x yi k x k yx y x yf x y F k k e dk dk

π∞ − +

−∞= ∫ ∫

( ) ( )

(2 )

( , ) , x yi k x k yx yF k k f x y e dxdy

π∞ += ∫ ∫ ( )( , ) ,x y f y y−∞∫ ∫

9PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 10: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Gibbs Phenomena• Overshoot of a synthesized f(x) by 9% of the amplitude

at discontinuities, known as Gibbs Phenomena, is due to the limited number of Fourier components used to createthe limited number of Fourier components used to create f(x).

• When N actually goes to infinity, f(x) would be 100% accurate.

• For limited N there is oscillations in f(x) with frequency of Nf0. 0

• When the N is large enough the width of the oscillations 1/2Nf0 goes to zero and the overshoot contains zero powerpower.

• This allows usage of Fourier series even if there is a discrepancy with the actual function.

10PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 11: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Exercise4 1)4.1) a) Calculate Fourier transform of the square pulse given in this figure

( ){ }( ){ }

f x

f

F

F

given in this figure.

b) Plot the

c) Use FFT function in MATLAB to plot the ( ){ }f xF

F

c) Use FFT function in MATLAB to plot the

What happens to the zeros of as L increases?kL( ){ } ( ){ }Cf x f x E= =F FAns: 0 sin2kLL c

E0

f(x)

E0

11

-L/2 +L/2 x0

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 12: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Exercise4 2)

( ){ }

4.2)

f xF

a) Calculate complex Fourier transform of the function given in this figure.

b) Plot the

( ){ }

( ){ } ( ){ }2

0sin ( / 2)2

/ 2S

f x

kdf x i f x iE dkd

= =

F

F F

c) Use FFT function in MATLAB to plot the

Ans:

( ){ } ( ){ } ( ){ }/ 2

C

kdf x f x i f x= + SF F FUse or

C SF F

the exponential representation

Note and are real. f(x)

E0

-d d x0

12

-E0

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 13: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Exercise4.3) a) Determine Fourier transform of the wave train given by

21 2

)( ) ( ) cos ( ) ( ) cos ( )p p

p

E x P x k x E x P x k x P x

k

= =

) g y and where is the unit square

pulse. is the spatial frequency of the oscillatory region of the pulse.

( ){ }

1 2.( )

E EP x

E xF

b) Plot the Fourier transform for both And c) Sketch the transforms in the limit as width of the extend to infinity.d) Use FFT function in MATLAB to plot the for both functions.( ){ }An ( ){ } ( ){ }

( ){ } ( ){ }

1 1

2 2

[sin ( ) sin ( ) ];

sin sin ( 2 ) sin ( 2 ) ;2 2

C p p

C p p

E x E x L c k k L c k k L

L LE x E x L ckL c k k L c k k L

= = + + −

= = + + + −

F F

F F

s:

( ){ } ( ){ }2 2p p

1

P(x)E2(x)E1(x)

111

13

-L +L x0-L +L x0-L +L x0

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 14: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Time domain Fourier transformThe same wavepacket of exercise 4 3 in time domain:

0 cos -( )

0 | |pE t T t T

E tt T

ω ≤ ≤⎧= ⎨

>⎩

The same wavepacket of exercise 4.3 in time domain:

( )1( )2

i tf t F e dωω ωπ

∞−

−∞

= ∫

( ){ }

( ) ( )

( ) [sin ( ) sin ( ) ];

i tF f t e dt

E t A T c T c T

ωω

ω ω ω ω ω

−∞

=

= = + + −

∫F ( ){ } ( ) [sin ( ) sin ( ) ];p pE t A T c T c Tω ω ω ω ω+ +F

A(k) A(ω)

kp kp+π/L

kp-π/L k

ωp ωp+π/T

ωp-π/T ω

14PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 15: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Frequency bandwidth2 0

2 4

In time domain temporal width of the pulse is while

and width of the transform is said to be . Thus

t T

tT

ωπω ω π

Δ = < < ∞

Δ ≈ Δ Δ =

Product of the width of the pakage in -space and -space is constant.In fr

Tt ω

2 0equency domain spatial width of the pulse is while x L kΔ = < < ∞2 . 4

q y p p

and width of the transform is said to be Thus k x kLπ πΔ ≈ Δ Δ =

A(k) A(ω)

kp kp+π/L

k -π/L k

ωp ωp+π/T

ω -π/T ω

15

kp π/L k ωp π/T ω

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 16: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Uncertainty relations

2, / 2 2 /k x

kω ν ω π π λ λΔ Δ = Δ Δ = Δ

Δ Δ

Product of the width of the pakage in -space and -space is constant. and are known as frequency bandwidths.

Choice of and k are somewhat arbitraryωΔ ΔChoice of and k are somewhat arbitrary. Important fact is that 1t x kνΔ Δ ≈ Δ Δ = and constantThese relations are known as uncertainty relations and have profound practical importance. They impose limits on accuracy of our measurementsor precision achievements.Choosing νΔa frequency bandwidth of restricts us in receiving signalsChoosing

1t

ν

ν

Δ

Δ =Δ

a frequency bandwidth of restricts us in receiving signals

that are shorter than or

16PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 17: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Coherence length

,1/t

νν

ΔΔ ≈ Δ

If a wavetrain has frequency bandwidth of it has been produced within time interval from a group of oscillators. These oscillators may have produced waves that have constant phase relation tΔship with each other only during . The next wavetrain has a completely different phase relationship

c

c c

tl c t

Δ

Δ = Δ

The next wavetrain has a completely different phase relationship. is known as coherence time of the source.

is known as the coherence length of the light produced c c g

νΔ

g pby the source.

is due to natural linewidth of the plus which is due to differentb d i h i h th l (D l ff t) lli ibroadening mechanisms such as thermal (Doppler effect), collision

etc.

17PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 18: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Meaning of negative spatial frequency

• Complex representation of Fourier transforms gives rise to a symmetrical distributions of positive and negative spatial frequency terms.

• Certain optical phenomena such as diffraction occur symmetrically in spacesymmetrically in space.

• A relationship between these phenomena and spatial frequency spectrum can be constructed if we use both negative and positive spatial frequency terms.

• Negative frequency becomes a useful mathematical device to describe physical systems that are symmetricaldevice to describe physical systems that are symmetrical around a central point

18PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 19: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

About the constants of the Fourier transformstransforms

( )( ) ikxf x F k e dkα∞

−= ∫ ( )( )

( ) ( ) ikx

f x F k e dk

F k f x e dx

α

β

−∞

=

∫ and can be anything as long as

1= for the 1D Fourier transforms

α β

αβ

−∞∫

2

= for the 1D Fourier transforms 21= for the 2D Fourier transforms

4

αβπ

αβπ4

When = we have symmetric Fourier transformation.πα β

19PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 20: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Parseval’s identities for Fourier integrals Sum of the squares of the Fourier coefficients of a function is equal

{ } ( )2

2 2 201 ( )2

to the square integral of the function.

For Fourier series: L

m mL

Af x dx A BL

= + +∑∫ { } ( )1

( )2

( ) ( )If and are Fourier sine tran

m mLm

S S

fL

F k G k

−=∑∫

( ) ( ),

( ) ( ) ( ) ( )

sforms of and thenf x g x

F k G k dk f x g x dx∞ ∞

=∫ ∫0 0( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

If and are Fourier cos transforms of and thens s

C C

F k G k dk f x g x dx

F k G k f x g x

F k G k dk f x g x dx∞ ∞

=

=

∫ ∫

∫ ∫

{ } { }

0 0

2 2

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

If then

and

C CF k G k dk f x g x dx

f x g x

F k dk f x dx∞ ∞

=

=∫ ∫

∫ ∫ { } { }2 2( ) ( )F k dk f x dx∞ ∞

∫ ∫{ } { }0 0

( ) ( ) andsF k dk f x dx=∫ ∫ { } { }0 0

* *

( ) ( )

( ) ( ) ( ) ( )

For general Fourier transforms: CF k dk f x dx

F k G k dk f x g x dx∞ ∞

=∫ ∫

∫ ∫

20

*

( ) ( ) ( ) ( )

( ) ( ) is the complex conjugate of the

F k G k dk f x g x dx

G k G k−∞ −∞

=∫ ∫

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 21: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

The convolution theorem

( ) ( ) ( ) ( )If and are the Fourier transforms of and thenF k G k f x g x( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

If and are the Fourier transforms of and thenikx

F k G k f x g x

F k G k e dk f u g x u du∞ ∞−

−∞ −∞= −∫ ∫

*1* ( ) ( )2

If we show the of the functions and with , convolution f g f g

f g f u g x u du∞

∞= −∫

{ } { } { }2

*Four

f g f gπ −∞

=

∫F F F

ier transform of the convolution of two functions is equal toFourier transform of the convolution of two functions is equal to the product of their Fourier transforms.

21PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 22: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Discrete Fourier transform

• Analytical Fourier transformation is possible for some functions.

• If there is no functional representation of data such as image of a person or collection of data points, then how we perform Fourier analysis?we perform Fourier analysis?

• There is a numerical techniques to determine frequency content of such data known as discrete Fourier transform.

22PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 23: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Analysis of two-dimensional Signals and systemssystems• Linearity is a common property of many physical

phenomena

SystemSystem

Stimuli Response

Addition

System

23

Many ResponsesMany stimuliPHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 24: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Linear systems theory

• Optical imaging operation is a linear mapping of object light distributions to image light distributions.

• This mapping is done by the wave equation.• Linear systems theory gives us the ability to express the

response to a complicated stimulus in terms of theresponse to a complicated stimulus in terms of the responses to certain elementary stimuli.

• Some mathematical tools are used in describing linear gphenomena

24PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 25: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Two dimensional Fourier transformation

x xf k xGoodman's notation: is equivalent to spatial frequency in diretion( , )

, :

x x

g x y

x y

Fourier transform or Fourier spectrum of a complex-valued function

with two independent variables (space) is2 ( )j f f∞

∫ ∫( ,xG f f { } ( ) 2 ( )) ( , ) , x yj f x f yy g x y g x y e dxdy

f f

π∞ − +

−∞= = ∫ ∫

The transform itself is a complex-valued function of two independent variables (frequency)

F

( )

{ } ( ) 2 ( )1

,,

, x y

X Y

X Y

j f x f yX Y

f fG f f

G G f f e dfπ +− =

variables (frequency)The inverse Fourier transform of

F df∞

∫ ∫{ } ( ),X YG G f f e dfF

( , )x ydf

g x y−∞∫ ∫

or Fourier integral representaion of function

25PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 26: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier transformation as a decomposition of g(x y) in 2Dof g(x,y) in 2DIn dealing with linear systems we need to decompose a complicated

{ } ( ) 21( ) Xj f xXg x G G f e π−= =

ElemenW i hti

input to a number of simple elements. Fourier transformation does this job.

F df∞

−∞∫taryElemenWeighting

factor or Amplitudes

( )( )g x

G f

tary function

This is expressing the space function in terms of its frequency spectrum

( )2

.

( )

X

X

j f x

G f

e

G f

πThis is linear combination of the elementry functions of the form

The s are the weighting factors or amplitudes of each function.( )f g g p

26PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 27: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Decomposition of g(x,y) in 2DGoal: Finding orientation and frequency of the constant phase lines for exponential

2 ( )2 X Yj f x f yD e π +

elementary functions. For Fourier transforms the elementary functions have the form: For each freq ( , )X Yf fuency pair the corresponding elementary function has a zero q ( , )

2X Y

X

Y Y

f fm

f ny x nf f

π

= − +

y p p g yor phase along the lines described by:

where is an integer. ySlope of the line perpendicular to the constant phase plane

( , )x y xθ

So the elementary functions are being directed in

plane at an angle with respect to the axis.1/fY

L θ

-1

( , )

tan

1

X

Y

x y x

ff

θ

θ⎛ ⎞

= ⎜ ⎟⎝ ⎠

plane at an angle with respect to the axis.

x1/fX

L θ

2 2

1 .

( cos sin1/ 1/

X Y

Lf f

L Lf f

θ θ

=+

= =

and spatial period of

Use & to find L)

27

1/ 1/X Yf fSo we see the inverse Fourier transform as a form of decomposition with a periodic nature of the exponential elementary functions.

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 28: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier transformation and existence conditionsconditionsExistence conditions (sufficient):1) t b b l t l i t bl th fi it ( ) l1) g must be absolutely integrable over the finite (x,y) plane2) g must have only finite number of discontinuitiesand a finite number of maxima and minima.o a a a d a3) g must have no infinite discontinuities. If a function does not satisfy all of the above conditions and yet can be written as sum of the functions that satisfy the conditions, we can

Fourier transform it by taking the Fourier transform of the pieces. Limit of this new sequence is called generalized Fourier transform ofLimit of this new sequence is called generalized Fourier transform of

the function.If the transform exists, then we use it and don't worry about the

28

existanace conditios.

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 29: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier Transforms (summary)( )

( ) ( )

11 ) ( ) ( ) ( )2

1

Hecht ikx ikx

k k

D g x F k e dk F k f x e dxπ

∞ ∞−

−∞ −∞

= =∫ ∫

∫ ∫ ( )

( )

( )2

( )

12 ( , ) ,(2 )

2 ( , ) ,

Hecht)

inverse Hecht)

x y

x y

i k x k yx y x y

i k x k yx y

D f x y F k k e dk dk

D F k k f x y e dxdy

π∞ − +

−∞

∞ +

=

=

∫ ∫

∫ ∫ ( )

2 ( , Goodman)

x y

D g x y

−∞∫ ∫{ } ( )

{ } ( )

2 ( )1

2 ( )

) ,

2 ( ) ( )inverse Goodman)

X Y

X Y

j f x f yX Y X Y

j f x f y

G G f f e df df

D G f f g x y g x y e dxdy

π

π

∞ +−

−∞

∞ − +

= =

= =

∫ ∫∫ ∫

F

F { } ( )

( )

( )

2

2 ( , ) ( , ) ,

1/ 2

inverse Goodman)

Note: the reason Goodman's notation does not have the coefficients is that he uses spatial fr

X Yj f f yX YD G f f g x y g x y e dxdy

π−∞

= = ∫ ∫F

1/ 2 /equency insted of wavenumberf kλ π λ= =is that he uses spatial fr

( ) ( )

( ) 2 ( )

1/ 2 /

, ,

equency insted of wavenumber

Here or are the elementary components that the signal

is made up of and or is a complex function that containes

x y X Y

x x x xi k x k y j f x f y

x y X Y

f k

e e

F k k G f f

π

λ π λ− + +

= =

29

( ) ( )in

x y X Y

formation about the phase and amplitude of each elementary components.

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 30: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier transform theorems I1 Linearity theorem: transform of sum is sum of transforms

{ } { } { }1. Linearity theorem: transform of sum is sum of transforms

g h g hα β α β+ = +F F F

2. Similarity theorem: sreatch of coordinates in space domain

results in contraction of coordinates in frequency domain and q y

a

{ } ( ) { } 1( ) ( )

change in amplitude of the spectrum

If then X Yf fg x y G f f g ax by G ⎛ ⎞⎜ ⎟F F{ } ( ) { }( , ) , ( , ) ,

| |If then

3 Shift th t l ti i d i d

X YX Yg x y G f f g ax by G

ab a b= = ⎜ ⎟

⎝ ⎠F F

{ }( )

3. Shift theorem: translation is space domain produces a linear phase shift in frequency domain.

If G f fF ( ) { } ( ) - 2 ( )( )then X Yj f a f bb G f f π +F

30

{ }( , ) ,If Xg x y G f f=F ( ) { } ( ) 2 ( )( , ) ,Phase shiftFourier transform

is not affected

then X Yj f a f bY X Yg x a y b G f f e π +− − =F

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 31: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier transform theorems II

{ } ( )( , ) ,

4. Rayleigh's enrgy theorem (parsewal's theorem): the sum (or integral) of the

square of a function is equal to the sum (or integral) of the square of its transform.If X Yg x y G f f=F { } ( )

2

( , ) ,

| ( , ) |Then

X Yg y f f

g x y dxdy 2

( )

| ( , ) |- - energy density in

frequency domainEnergy contained in the waveform

X Y X YG f f df df∞ ∞

∞ ∞

=∫ ∫ ∫ ∫

{ }

( , )

21 ( )

frequency domainEnergy contained in the waveform

For the Fourier series the Parsewal's theorem takes the following form: g x y

Lf x dx

L ( )2

2 20

2L

m mA A B

= + +∑∫ { }( )L

fL −

( )12

5. Convolution theorem:

m mm=∑∫

{ } ( ) { } ( )

( ) ( )

( , ) , ( , ) ,

( , ) ( , ) , ,

If and then

X Y X Y

X Y X Y

g x y G f f h x y H f f

g h x y d d G f f H f fξ η ξ η ξ η∞

= =

⎧ ⎫⎪ ⎪− − =⎨ ⎬⎪ ⎪⎩ ⎭∫ ∫

F F

F

31

.-

Convolution in space domain multiplication in frequency domain∞⎪ ⎪⎩ ⎭

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 32: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

6. Cross-correlation is a measure of similarity of two waveforms as a function of a time lag applied to one of them It is commonly used to search a long duration signal

Fourier transform theorems IIItime-lag applied to one of them. It is commonly used to search a long duration signal for a shorter, known feature.

{ } ( ) { } ( )( , ) , ( , ) ,

It also has applications in pattern recognition, single particle analysis, electron tomographic averaging, cryptanalysis, and neurophysiology.

& then cross-correlation ofX Y X Yg x y G f f f x y F f f= =F F , is f g

{ } ( )

*( , ) * ( , ) ( , )

( , ) ,-

Autocorrelation is the cross-correlation of a function with itself. If X Y

h x y f g f g x y d d

g x y G f f

ξ η ξ η ξ η∞

= = − −

=

∫ ∫F

⎧( )

{ }

2*

2 *

( , ) ( , ) ,

( , ) ( , ) (

-

then

X Yg g x y d d G f f

g x y G G

ξ η ξ η ξ η

ξ η

⎧ ⎫⎪ ⎪− − =⎨ ⎬⎪ ⎪⎩ ⎭

=

∫ ∫F

F , )

The theorem is a special case of

X Yf f d dξ η ξ η∞

⎧⎪⎪⎨⎪ − −⎪⎩

∫ ∫{ }

{ }

*

1

( , ) ( , ): ,

( )

-

the convolution theorem in which we convolve with 7. Fourier integral theorem at each point of continuity of

g x y g x yg

g x y

⎪⎩

− −

=

∫ ∫

FF { }1 ( ) ( )g x y g x y− =F F{ }( , )g x yFF { }( ){ }{ }

( , ) ( , )

, ( , )The two successive transforms yeild

the successive transformation and inverse transformation of a function are not exactly the same although for even functions they

g x y g x y

g x y ag x y= − −

F F

F F

differ within a constant.

32

y g y

{ } { } { }( , ) ( ) ( ) ( , ) ( ) ( )X Y

8. Fourier transform of a separable function can be written as:

if X Y X Yg x y g x g y g x y g x g y= =F F F

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 33: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Exercise( ) - / 2 / 24 4) { fE L x Lf x ≤ ≤= Fourier transform of the square pulse is( )

( ){ }0 | | / 24.4) {

sin .2

x L

f

f x

kLf x E L c

>=

=F

Fourier transform of the square pulse is

Use the Fourier transform theorems to find the Fourier

tansform of the following pulses. In each case mention the theorem used.

( ) ( ) ( )( ) ( )

- - - / /0 | | 0 | | 0 | | /

-0 , 0 5

{ { {

{ {

f f f

f

E L x L E aL x aL E L b x L ba x L b x aL c x L b

E L x Ld x L x L d x

f x f x f x

f x f xα βα β

≤ ≤ ≤ ≤ ≤ ≤> > >

≤ ≤<− > <

= = =

= =

a) b) c)

d) e)

{ } { } { } { }

5 10, 10

2 2( ) cos ( ) ( ) ( ) ( ) ( )

fE L x LL x L

g gg x E k x g x f x g x f x g x

≤ ≤>

= +F F F F

f) If find then ; ; { } { } { } { }{ }

( ) ( ) ( ) ( ) ( ) ( )

( )* ( )( )* ( )

g gg g f g f g

f x g xf x g x

F

) ; ;

where * is the sign for convolution.g) Calculate directly without using any of the theorems. Then take the Fourier transform of the result to confirm the convolution theorem.

E

f(x)g(x)

Eg Ef

33

-L/2 +L/2 x0x0

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 34: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Delta function

The delta dunction is a Generalized Function that is defined as the limit of a class of delta sequences. It is also called "Dirac's delta function" or "impulse symbole".A generalized function is generalization of the concept of a function and

f fthey are particularly useful in making discontinuous functions more like smooth functions.A delta sequence is a sequence of strongly peaked functions for which q q g y p

lim ( ) ( ) (0)

As n the sequences become delta functions.nn

x f x dx fδ∞

−∞→∞=

→∞∫

( ) ( ) ( ) ( ) ( ) ( )

As n the sequences become delta functions.A Fundamental property of the delta function:

I) and in fact f x x dx f f x x dx fα ε

δ α α δ α α∞ +

− = − =∫ ∫

34

( ) ( ) ( ) ( ) ( ) ( )f f f fα ε−∞ −∫ ∫

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 35: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

More identities with delta function1) ( - ) 0 ) ( ) ( )

1

II x x III x xδ α α δ α δα

= ≠ = for

2 2 1) ( - ) [ ( ) ( - )]2( )) [ ( )] i

i

IV x x x

x xV g x x g

δ α δ α δ αα

δδ

= + +

−=∑

where are the roots of

( )

(

) [ ( )]'( )

) '( ) -1( ) ( 1) ! ( )

ii i

n n n

V g x x gg x

VI x x x x n x

δ

δ δ δ

δ

= = −

∑ e e a e e oo s o

or more generally where )n n x(x) is th derivative of the delta function with respect to

) '(- ) - '( )

) ( ) '( - ) - '( )

VII x x

VIII f x x dx f

δ δ

δ α α∞

−∞

=

=∫

( ) p

which is equivalent to convolution

( )-

( '* )( ) ' ( ) '( )

) '( )

f x f x dx f

IX x dx

δ α δ α α

δ

∞= − = −

= ∞

∫ ??

12

1

1) '( ) 0 ) 0X x x XI dxδ δ∞

⎛ ⎞= =⎜ ⎟⎝ ⎠∫ ∫

35

- -1

0 0( ) ( - ) ( )

x

f x x x dx f xδ

∞ ⎜ ⎟⎝ ⎠

=

∫ ∫

∫XII) sifting property

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 36: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Delta function in higher dimensions

2 2

In two dimension:⎧⎪ 2 2 2

In three dimension:⎧2 2

22 2

2

0 0( , )

0

( ) 1

x yx y

x y

d d

δ

δ∞ ∞

⎧ + ≠⎪= ⎨∞ + =⎪⎩

∫ ∫

2 2 23

2 2 2

3

0 0( , , )

0

( ) 1

x y zx y z

x y z

d d d

δ

δ∞ ∞ ∞

⎧ + + ≠⎪= ⎨∞ + + =⎪⎩

∫ ∫ ∫2

2 2

( , ) 1

1( , ) ( , )

x y dxdy

ax by x yab

δ

δ δ

−∞ −∞=

=

∫ ∫3

3 3

( , , ) 1

1( , , ) ( , , )

x y z dxdydz

ax by cz x y zabc

δ

δ δ

−∞ −∞ −∞=

=

∫ ∫ ∫

2 ( , ) ( ) ( )In polar coordinates:

abx y x yδ δ δ= ( )3( , , ) ( ) ( )

( ) ( )In cylinderical coordinates:

x y z x y zδ δ δ δ

δ δ

=

2 ( )( , ) rrr

δδ θπ

=3 ( ) ( )( , , )

In

r zr zr

δ δδ θπ

=

polar coordinates:

36

32

( )( , , )2

rrr

δδ θ φπ

=

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 37: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Some delta sequences*If we take limit of any of these sequences and let n , we will have →∞

1 1 1 1- -2 2 2 21) ( ) lim ( )

y q ,a delta function.

n x n xn n n nx xδ δ

⎧ ⎧< < < <⎪ ⎪⎪ ⎪= → =⎨ ⎨

2 2

1) ( ) lim ( )1 10 02 2

2) ( ) lim

nn

n x

x xx x

n nnx e

δ δ

δ

→∞

= → =⎨ ⎨⎪ ⎪< <⎪ ⎪⎩ ⎩

=2 2

( ) n xn

nx eδ −→ =) ( )n π→∞

( )

3) ( ) lim sin ( ) ( ) sin ( )

1 1

n

nn

inx inx inx inx

n nx c nx x c nx

e e e e

π

δ δπ π→∞

− −

= → =

-

1 14) ( ) lim ( )2 2

1 15) ( ) lim ( )2

nn

nixtnnn

e e e ex xnx i nx i

x e xix

δ δ

δ δπ

→∞

→∞

− −= → =

⎡ ⎤= → =⎣ ⎦ -2nixt

ne

ixπ⎡ ⎤⎣ ⎦

1 16) ( ) lim ( )2 2

1 1sin sin2 21 1

n nixt ixt

nn nnx e dt x e dt

n x n x

δ δπ π− −→∞

= → =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫

37

2 21 17) ( ) lim ( )1 12 2sin sin2 2

nnx x

x xδ δ

π π→∞

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦= → =⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠*Arfken PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 38: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Some delta functions*1 ε

2 20

1

0

11) ( ) lim ;

2) ( ) lim ;

xx

x x

ε

ε

ε

εδπ ε

δ ε

=+

=

2 / 4

0

1( ) lim ;21( ) li i

3)

4)

xx e

x

ε

εδ

πε

δ

+

→=

⎛ ⎞⎜ ⎟

3

0

( /3)

0

( ) lim sin ;

1 1( ) lim ( )2

4)

5) ; is the Airy Function i xt t

xxx

xx Ai Ai Ai x e dt

ε

ε

δπ ε

δε ε π

∞ +

−∞→

⎛ ⎞= ⎜ ⎟⎝ ⎠

⎛ ⎞= =⎜ ⎟⎝ ⎠ ∫0

1/0

21( ) lim6) xx J

ε

εε

ε ε π

δε

∞→

⎝ ⎠+

=

∫1 ( ); is a Bessel function of the first kindnJ x

ε⎛ ⎞⎜ ⎟⎝ ⎠

⎛ ⎞2- /

0

/(1 )

1 2( ) lim

1( )

7) ; is a Laguerre polynomial of an arbitrary

positive integer order and contur e

xn n

xt t

xx e L L

eL x dt

ε

εδ

ε ε®

− −

⎛ ⎞= ⎜ ⎟⎝ ⎠

ncloses the∫

38

1( )2 (1 )

positive integer order and contur en nL x dti t tπ +=

−ncloses the

origin and traversed in a counterclockwise direction.

*ArfkenPHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 39: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

The delta function as a Fourier transform

[ ]( ) 1

The delta function as a Fourier transform is:jkxdkδ

∫F [ ]-1

( ) 1

[ ( )] ( ) 1

jkxk

jkx

x e dk

x x e dx

δ

δ δ

−∞

∞ −

= =

= =

∫∫

F

F [ ( )] ( ) 1

F i f f h d l f i i

x x x e dxδ δ−∞∫F

[ ] 00 0( ) ( )

Fourier transform of the delta function is jkxjkx

x x x e x x dx eδ δ∞

− = − =∫F [ ]0 0( ) ( )x −∞∫

39PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 40: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Fourier transform of the Gaussian Function22-( ) 0,

/ ( )

Example: is profile of a Gaussian pulse at where is a constant and

. Prove that the Fourier transform of is a Gaussian function. Then show that the product of the widths of

axf x Ce t a

C a f xπ

= =

=

1/ 2

the function and its Fourier transfom is a constant. Wh i h l f h if h h id h f h i i ?

2 2

-1/ 2

- - / 4 1( ) ( ) , , 22

What is the value of the constant if we choose to measure the width at of their maxima?

Ans) ax ikx k ax k

e

F K Ce e dx e aa

σ σ∞

−∞= = = =∫

22⎛ ⎞

a−

2 2 2 2

22 2 2

/ 4 / 4 / 4

/ 2 / 4 ,4

1 1( ) ( )

change variable to

k a k a k a

k dx ikx ax ik a k a dxa a

aF K e e d e F K e

β

β

ββ

β π∞− − − −

⎛ ⎞⎜ ⎟+ = − − − = − − =⎜ ⎟⎝ ⎠

= = → =∫( ) ( )

The Fourier transform of a Gaussian is a Gaussian function with a differena

βπ π−∞∫

( )( ) ( ) 1/ 0.607

t coefficients.

We measure the width of and at of their maximum and call the corresponding x and k the standard deviation and of the function and its Fourier

f x F K eσ σ=

( )2 / 4

kcorresponding x and k the standard deviation and of the function and its Fourier

transform. x

k

σ σ

σ 21/ 2 2 1/ 2 1/ 2 ; 1x k ; Product of the pulsewidth and it spatial frequency bandwidth is constant.

Applications of the Gaussian function: wave packet of individual photons cross sectiona

k x xa a a aσ σ σ σ σ= → = = → = =

l

40

Applications of the Gaussian function: wave packet of individual photons,cross-sectiona

00

l irradiance distribution of a laser beam in TEM mode can be represented with Gaussian profile.

PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 41: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Example of Generalized Fourier transform

2 2 22 ( )

Fourier transform of the Dicac delta function: N π +

{ } { }

2 2 2

2 2 2 2 2 2

2 ( )

0

2 ( )2 ( ) 2 ( )

( , ) lim

( , ) x y

N x y

N

j f x f yN x y N x y

x y N e

g x y N e N e e dxdy

π

ππ π

δ − +

∞ − +− + − +

=

= = ∫ ∫F F{ } { }( )g y y−∞∫ ∫

41PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals

Page 42: Fourier Integrals (Transformation).ppt - Erbion …erbion.com/index_files/258 Optics/Fourier Integrals...Fourier series in frequency 6 0 10 20 30 40 50 60 70 80 90 0 mk Fourier coeffici

Exercise

2

4.5)( 2)x x Vδ + −a) Find using identity

( - )xδ αb) Find the Fourier series expansion of

42PHYS 258 Spring 2010 SJSU Eradat Fouriet integrals