Top Banner

of 12

FML new

Aug 07, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/20/2019 FML new

    1/28

    POST IMPACTED STRENGTH ANALYSIS OFFIBRE METAL LAMINATES( REVIEW – 3)

    C.SETHUMAHADEVANM.E (AERO) P.T2013657013

    GUIDEDr.B.T.N. Sridhar Professor & Head

    Department of Aerospace Engineering

    MIT Campus ,Anna University ,Chennai -44

  • 8/20/2019 FML new

    2/28

    AIM AND OBJECTIVE

    • Aircraft structures are more prone to impact damages. Impact damage on aircraftstructures can be caused by low- and high-velocity sources such as runawaydebris, hail, bird strikes, engine debris, collisions between service cars, and cargo.

    • To overcome the above, this experiment’s objective is to characterize the impactproperties of the FML used for aircraft structures.

    .

  • 8/20/2019 FML new

    3/28

    PRACTICAL RELEVANCE

    Weight reduction and improved damage tolerance characteristics were the

    prime drivers to develop new family of materials for the aerospace/aeronauticalindustry. Aiming this objective, a new lightweight Fiber/Metal Laminate (FML) has

    been developed. The combination of metal and polymer composite laminates can

    create a synergistic effect on many properties. The mechanical properties of FML

    shows improvements over the properties of both aluminum alloys and composite

    materials individually. Due to their excellent properties, FML are being used as

    fuselage skin structures of the next generation commercial aircrafts

  • 8/20/2019 FML new

    4/28

    The moisture absorption in FML composites is slower when compared with

    polymer composites, even under the relatively harsh conditions, due to the barrier

    of the aluminum outer layers. Due to this favorable atmosphere, recently big

    companies such as EMBRAER, Aerospatiale, Boeing, Airbus, and so one, starting

    to work with this kind of materials as an alternative to save money and to guarantee

    the security of their aircrafts.

    Cont ..

  • 8/20/2019 FML new

    5/28

  • 8/20/2019 FML new

    6/28

    RESULTS PLOT

    IMPACT

    Load Vs TimeEnergy Vs TimeDeformation Vs Time

    FLEXURAL(3 Point Bending)

    Stress Vs Strain

  • 8/20/2019 FML new

    7/28

    FACILITIES AVAILABLE

    oven

    UTM (Instron 3367)IIT (Instrument Impact Test )

  • 8/20/2019 FML new

    8/28

    OVEN

    Maximum Temperature :400 ° CVolume: 500 ltr Resolution : ± 5 ° c

  • 8/20/2019 FML new

    9/28

    UNIVERSAL TESTING MACHINE

    Instron Model : 3367

    Load Capacity :30 KN

    Test typeTensileFlexural :3 point -4 point

  • 8/20/2019 FML new

    10/28

    INSTRUMENT IMPACT TEST

    Drop height Range (mm) 30 to 1100

    Mass Range (kg) 2 to 70

    Speed range (m/s) 0.75 to 4.6

    Maximum speed withadditional system (option)(m/s)

    24

    Energy Range (J) 0.6 to 775

    Maximum energy withadditional energy system(option) (J)

    1800

    Test Temperature RT to 150°C

  • 8/20/2019 FML new

    11/28

    SELECTION OF LAMINATE

    Fibre Metal laminates

    GLARE ARALL(GLAss Reinfored Epoxy) (Aramid Fiber /Aluminum)

    GLARE Advantage• Better damage tolerance behavior (especially impact and metal fatigue as the

    elastic strain is larger than other metal material it can consume more impactenergy. It is dented easier but has a higher penetration resistance )

    • Better corrosion resistance.• Better fire resistance.• Lower specific weight .

  • 8/20/2019 FML new

    12/28

    STANDARD GLARE GRADE

  • 8/20/2019 FML new

    13/28

    FABRICATION OF GLARE

    A . Surface pre-treatment of aluminium Sheet .

    B. Hand lay-up

    C . Cutting the Specimen as per ASTM Standard

  • 8/20/2019 FML new

    14/28

    SURFACE TREAMENT

    Types of surface treatments1. Mechanical2. Chemical

    3. Electromechanical4. Coupling agent5. Dry surface treatment

  • 8/20/2019 FML new

    15/28

    SURFACE PRE-TREATMENT OF ALUMINIUM

    As per ASTM D 2651 Surface Prepartaion of metal surface for Adhesive BondingAluminium Alloy

    1. Sulfuric acidSodium Dichromate

    2. Etch (sulfuric Acid/Sulfate)

    Sulfuric AcidFerric sulfate

  • 8/20/2019 FML new

    16/28

    SULPHURIC ACID – SODIUM DICHROMATE

    SOLUTION COMPOSITION:Distilled water (70% by weight of total solution)Concentrated Sulphuric acid (H 2SO 4) – lab grade (27 % by weight of total solution)Sodium dichromate Na 2Cr 2O7 -(3% by weight of total solution)

    1. Clean the sheets using with banyan cloth.2. Emery the bonding surface of the sheet using 100 grit size emery sheets to get mat

    finishing.3. Ensure the surface is free from contamination and dust particles.4. Pour the distilled water (70% by weight of total solution) into the tray.

  • 8/20/2019 FML new

    17/28

    Cont…

    5. Ensure the level of water is maintained 10mm above the skin sheet.6. Mix the sodium dichromate (3% by weight of total solution) thoroughly with the distilled

    water.7. Slowly pour the Concentrated Sulphuric Acid (27% by weight of total solution) inside the

    tray uniformly over the total surface of the solution.8. Place the thermometer at one corner of the tray to monitor the temperature of the

    solution.9. Record the time at which the bath reaches 70 ⁰ C.10. Place the aluminum skin sheets slowly one by one inside the bath and keep it for

    30± 5min.

  • 8/20/2019 FML new

    18/28

  • 8/20/2019 FML new

    19/28

    Cont …

    1. Clean another tray with IPA.2. Fill the tray with distilled water for cleaning the etched sheets.3. Take out the etched sheets after 30 ± 5 min from the bath one by one and place them

    inside the cleaning tray.4. Clean the skin surface using banyan cloth.5. Shift the skin sheets to another cleaning tray filled with distilled water for further

    cleaning.6. cleaned sheets in hot distilled running water (temp.70 ± 5⁰ C).

  • 8/20/2019 FML new

    20/28

    FIBRE ORIENATION&HAND LAYUP

    1. Cross ply (0 ° /90 ° )2. Araldite AW 106 with hardener 956 by 1:1 ratio (adhesive)3. EPOXY LY 556 with hardener araldite it 951 by the ratio of

    10:1.(resin)

  • 8/20/2019 FML new

    21/28

    CROSS PLY

    Al 2024-T3

    Al 2024 T36 layer Fibre

    0

    90

  • 8/20/2019 FML new

    22/28

    FIBRE METAL LAMINATE

    250 X250 mm

  • 8/20/2019 FML new

    23/28

    FLEXURAL TEST (3 POINT BENDING)

    As per ASTM Standard D790Span length: 110mmWidth : 25 mmThickness : 3 mmCross Head moment : 1 mm/min

    MaxiLoad (KN)

    MaxDisplacement (mm)

    MaxStrain

    Modules(Mpa)

    0.1586 20.29 144.2 27990

  • 8/20/2019 FML new

    24/28

    TENSILE TEST

    Max Load (KN) MaxDisplacement(mm)

    Max Strain Modules (Mpa)

    7.200 3.359 0.031 7953

    ASTM D 3039Gauge length :120 mmGrip distance :80mmCross head moment : 0.5 mm/min

  • 8/20/2019 FML new

    25/28

    Peak Force (N) Total Energy (J) Total Deformation (mm)

    3177.555 27.159 17.570

    IMPACT TEST

    Standard followed ASTM D 5628 FDStriker Velocity : 6 m/sTotal mass :1.92kgTup Diameter (mm) : Ø12.7 Hemispherical

  • 8/20/2019 FML new

    26/28

    REFERENCE

    1. Botelho, Edson Cocchieri, Silva, Rogério Almeida, Pardini, Luiz Cláudio, & Rezende,Mirabel Cerqueira. (2006). A review on the development and properties of continuousfiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research ,9 (3), 247-256,http://dx.doi.org/10.1590/S1516-14392006000300002

    2. Gin Boay Chai, Periyasamy Manikandan, Low velocity impact response of fibre-metallaminates – A review, Composite Structures, Volume 107, January 2014, Pages 363-381,ISSN 0263-8223, http://dx.doi.org/10.1016/j.compstruct.2013.08.003 .

    3. M. Sadighi, R.C. Alderliesten, R. Benedictus, Impact resistance of fiber-metallaminates: A review, International Journal of Impact Engineering, Volume 49, November

    2012, Pages 77-90, ISSN 0734-743X, http://dx.doi.org/10.1016/j.ijimpeng.2012.05.006.

    4. G. Caprino, G. Spataro, S. Del Luongo, Low-velocity impact behaviour of fibreglass –aluminium laminates, Composites Part A: Applied Science and Manufacturing, Volume35, Issue 5, May 2004, Pages 605-616, ISSN 1359-835X,http://dx.doi.org/10.1016/j.compositesa.2003.11.003 .

    http://dx.doi.org/10.1016/j.compstruct.2013.08.003http://dx.doi.org/10.1016/j.compositesa.2003.11.003http://dx.doi.org/10.1016/j.compositesa.2003.11.003http://dx.doi.org/10.1016/j.compstruct.2013.08.003

  • 8/20/2019 FML new

    27/28

    5. Roman Starikov, Assessment of impact response of fiber metal laminates,

    International Journal of Impact Engineering, Volume 59, September 2013, Pages 38-45, ISSN 0734-743X, http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008 .6. Qi Chen, Zhidong Guan, Zengshan Li, Zhaojie Ji, Yue Zhuo, Experimentalinvestigation on impact performances of GLARE laminates, Chinese Journal of Aeronautics, Available online 29 August 2015, ISSN 1000-9361,http://dx.doi.org/10.1016/j.cja.2015.07.002 .7. J. Bieniaś , P. Jakubczak, B. Surowska, K. Dragan, Low-energy impact behaviour anddamage characterization of carbon fibre reinforced polymer and aluminium hybridlaminates, Archives of Civil and Mechanical Engineering, Volume 15, Issue 4,September 2015, Pages 925-932, ISSN 1644-9665,http://dx.doi.org/10.1016/j.acme.2014.09.007 .

    8. Guo-Cai Yu, Lin-Zhi Wu, Li Ma, Jian Xiong, Low velocity impact of carbon fiberaluminum laminates, Composite Structures, Volume 119, January 2015, Pages 757-766, ISSN 0263-8223, http://dx.doi.org/10.1016/j.compstruct.2014.09.054

    http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.compstruct.2014.09.054http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.acme.2014.09.007http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.cja.2015.07.002http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008http://dx.doi.org/10.1016/j.ijimpeng.2013.02.008

  • 8/20/2019 FML new

    28/28

    Thank you