Top Banner
Flow Cytometric Opsonophagocytic Assays Joseph E. Martinez CDC, Atlanta Multiplexed OPA work supported in part by a non-restricted CRADA with Flow Applications, Inc. and covered under US patent 6,815,172 S. pneumoniae Data.011 10 0 10 1 10 2 10 3 10 4 FL2-Height M1
27

Flow Cytometric Opsonophagocytic Assays

Jan 13, 2016

Download

Documents

Angelo Ferrillo

Flow Cytometric Opsonophagocytic Assays. Joseph E. Martinez CDC, Atlanta. S. pneumoniae. Multiplexed OPA work supported in part by a non-restricted CRADA with Flow Applications, Inc. and covered under US patent 6,815,172. Opsonophagocytic Assays (OPA ) Two approaches for OP measurement - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Flow Cytometric Opsonophagocytic Assays

Flow Cytometric Opsonophagocytic Assays

Joseph E. MartinezCDC, Atlanta

Multiplexed OPA work supported in part by a non-restricted CRADA with Flow Applications, Inc. and covered under US patent 6,815,172

S. pneumoniae

Data.011

100 101 102 103 104

FL2-Height

M1

Page 2: Flow Cytometric Opsonophagocytic Assays

Opsonophagocytic Assays (OPA)

•Two approaches for OP measurement- Killing assays (Steiner, et al.,

others)- Uptake assays (Martinez; Jansen)

Page 3: Flow Cytometric Opsonophagocytic Assays

•Opsonophagocytic Assay

Page 4: Flow Cytometric Opsonophagocytic Assays

Fre

q

Fluorescence

FALS Sensor

Fluorescence detector

(PMT3, PMT4 etc.)

Page 5: Flow Cytometric Opsonophagocytic Assays

Flow Opsonophagocytic AssaysData.011

0 200 400 600 800 1000SSC-Height

R1

Data.011

100 101 102 103 104

FL2-Height

M1

Data.107

100 101 102 103 104

FL2-Height

M1

Phagocytic cells Complement Ctl

Positive Rx

Example OPA Graph

Reciprocal Dilution

8 16 32 64 128 256 5121024

Per

cen

t U

pta

ke

0

20

40

60

80

100

Pt Sample

Complement uptake

50% Maximum Uptake

Reported Titer

OPA Graph

Page 6: Flow Cytometric Opsonophagocytic Assays

Bacteria or Microspheres

S. pneumoniae Microspheres

Page 7: Flow Cytometric Opsonophagocytic Assays

 

uptake

Multiplexed Flow OPAExample OPA Graph

Reciprocal Dilution

8 16 32 64 128 256 5121024

Per

cent

Upt

ake

0

20

40

60

80

100

Pt Sample

Complement uptake

50% Maximum Uptake

Reported Titer

Single-plex

uptake

uptake

Uptake

uptake

Multiplexed Bead Based OPA

Log2 Reciprocol Dilution

2 4 6 8 10

Per

cent

Upt

ake

by H

L60

PM

Ns

5

10

15

20

25

30

35

40

45

Serotype 14, GreenSerotype 9V, PinkSerotype 6B, RedSerotype 4, Far Red

Multiplex

Page 8: Flow Cytometric Opsonophagocytic Assays

Serotype Reference OPA vs. Single Flow OPA r Values(p value)

Reference OPA vs. Three Color Flow OPA r Values (p value)

Reference OPA vs. Multiplexed Flow OPA r Values (p value)

Single Flow OPA vs. Three Color Flow OPA r Values (p value)

Single Flow OPA vs. Multiplexed Flow OPA r Values (p value)

4 0.88 (<0.001) 0.61 (0.04) 0.86 (<0.001) 0.80 (0.002) 0.85 (<0.001)

6B 0.77 (0.003) 0.87 (<0.001) 0.88 (<0.001) 0.86 (<0.001) 0.77 (<0.001)

9V 0.53 (0.08)1 0.79 (0.006) 0.80 (<0.001) 0.73 (0.008) 0.88 (0.002)

14 0.54 (0.04)1 0.75 (0.005) 0.85 (<0.001) 0.63 (0.03) 0.92 (<0.001)

18C 0.77 (0.003) 0.91 (<0.001) 0.71 (,0.001) 0.74 (0.005) 0.92 (<0.001)

19F 0.95 (<0.001) 0.91(<0.001) 0.68 (0.01) 0.91 (<0.001) 0.87 (<0.001)

23F 0.83 (<0.001) 0.78 (0.003) 0.68 (,0.001) 0.88 (<0.001) 0.88 (<0.001)

1Different strains used

Correlations between reference OPA and flow OPA

Page 9: Flow Cytometric Opsonophagocytic Assays

Technical Considerations

Targets 1. Bacteria

-Variable label

Page 10: Flow Cytometric Opsonophagocytic Assays

uptake

Variability of Labeled Bacteria

Negative Cells

Positive Cells

Page 11: Flow Cytometric Opsonophagocytic Assays

Technical Considerations

Targets 1. Bacteria

-Variable label 2. Beads

-Standardized label

Page 12: Flow Cytometric Opsonophagocytic Assays

uptake

Beads Provided a Standard Fluorescent Target

CDC, Sero 4-Y Beads FA, Sero 4-Y Beads

Page 13: Flow Cytometric Opsonophagocytic Assays

Technical Considerations

Effector Cells 1. Donor PMNs 2. HL60 PMNs

Page 14: Flow Cytometric Opsonophagocytic Assays

Log2 HL60 PMN Titers

0 2 4 6 8 10 12

Log

2 D

ono

r P

MN

Tite

rs

0

2

4

6

8

10

12

Serotype 4, r = 0.96, p < 0.001Serotype 6B, r = 0.92, p < 0.001Serotype 9V, r = 0.94, p < 0.001Serotype 14, r = 0.96, p < 0.001Serotype 18C, r = 0.86, p < 0.001Serotype 19F, r = 0.92, p < 0.001Serotype 23F, r = 0.89, p < 0.001

Comparison of PMN and HL60 PMN Derived OPA Titers

Page 15: Flow Cytometric Opsonophagocytic Assays

Technical Considerations Cont.

Effector Cells 1. Donor PMNs 2. HL60 PMNs

a. Culture maintenance

Page 16: Flow Cytometric Opsonophagocytic Assays

Effects of Different Culture Conditions

HL60 Stock Published Induction Protocol

Modified InductionProtocol

38% S and G2/M 16% S and G2/M 3% S and G2/M

18%3% 57%

Page 17: Flow Cytometric Opsonophagocytic Assays

Technical Considerations

Effector Cells 1. Donor PMNs 2. HL60 PMNs

a. Culture maintenance

b. Induction protocol

Page 18: Flow Cytometric Opsonophagocytic Assays

Effects of Culture Conditions on HL60 Differentiation and Function

Normal Culture Method

Roller Culture Method

Page 19: Flow Cytometric Opsonophagocytic Assays

Data Collection

• Gating– Minimize overlap of “dead” cells within

gate– Ensure gate contains a cells with

ingested targets

Page 20: Flow Cytometric Opsonophagocytic Assays

M1

Gating Effects

Page 21: Flow Cytometric Opsonophagocytic Assays

Data Collection

• Gating– Minimize overlap of “dead” cells within

gate– Ensure gate contains a cells with

ingested targets

• Compensation– Critical in multiplexed assays

Page 22: Flow Cytometric Opsonophagocytic Assays

Data Analysis-Automation

• Flow cytometric OPA can be automated– Sample handler– Batch file analysis of raw data files

• Attractors• FlowJo

– Curve fitting software to determine titer• Statlia

• GLP compatible

Page 23: Flow Cytometric Opsonophagocytic Assays

Automation Efficiencies

Published Single-plex

Automated Multiplexed

Data collection1 4hrs 3.5hrs3

Data processing2

2hrs 3min

Titer Determination

30min 15min

Total time required

6.5hr 3.6hr or 0.9hr per serotype

1Average for 5 plate run2Four hundred eighty files3Does not require constant attention

Page 24: Flow Cytometric Opsonophagocytic Assays

Reference Single-plex Multiplex

Setup time 30min 30min 30min

Assay time 12-15hr* 1.5 hr 1.5 hr

Instrument time/plate

2-3min 1hr 0.7hr

Data Analysis 15min 30sec 30sec

Tests/plate 5 5 20

Daily (8hrs) throughput

15* 30 120

Assay Comparisons

*Overnight incubation required

Page 25: Flow Cytometric Opsonophagocytic Assays

 

Advantages and Disadvantages1Multiplexed killing assay2Instrument/technician costs

Reference1 Flow Multiplex

Specificity ++++ ++++ ++++

Technically difficult

++ ++ ++++

Infectious Target ++++ - -

Multiplexed ++++ ++ ++++

Commercial NA ++ ++++

Automation ++ ++++ ++++

Cost ++ ++2 +2

Page 26: Flow Cytometric Opsonophagocytic Assays

Flow Cytometric OPA Technology

• Can be applied to other bacteria cleared through an OP mechanism

• S. aureus (Vernachio)

Beads Only Guinea Pig C' T1-2 (1ug/ml) Human IgG (1ug/ml)0

20406080

100120140160180200

Ph

ag

oc

yti

c P

rod

uc

t

Figure 1. Opsonization of ClfA-coated fluorescent beads. PMNs were incubated with unopsonized beads , complement opsonized beads, T1-2 plus complement opsonized beads, and non-specific human IgG1 complement opsonized beads. The phagocytic product (PP) represents the mean beads per cell multiplied by the percent fluorescent PMNs, as determined via flow cytometric analysis.

Page 27: Flow Cytometric Opsonophagocytic Assays

Summary

• Non-infectious targets• Correlate well with reference OP

method• High throughput• Automation can further increase

relative throughputs• Meet GLP guidelines