Top Banner
1 Challenge the future Flight and Orbital Mechanics Lecture slides
72

Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

May 13, 2018

Download

Documents

buiminh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

1Challenge the future

Flight and Orbital Mechanics

Lecture slides

Page 2: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

Semester 1 - 2012

Challenge the future

DelftUniversity ofTechnology

Flight and Orbital MechanicsLecture 7 – Equations of motion

Mark Voskuijl

Page 3: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

2AE2104 Flight and Orbital Mechanics |

Time scheduleDate Time Hours Topic

4 Sep 10.45 – 12.30 1, 2 Unsteady climb

6 Sep 10.45 – 12.30 3, 4 Minimum time to climb

11 Sep 10.45 – 12.30 5, 6 Turning performance

13 Sep 10.45 – 12.30 7, 8 Take – off

18 Sep 10.45 – 12.30 9, 10 Landing

20 Sep 10.45 – 12.30 11, 12 Cruise

25 Sep 10.45 – 12.30 13, 14 Equations of motion (wind gradient)

27 Sep 10.45 – 12.30 15, 16 Kepler orbits, gravity, Earth-repeat orbits, sun-

synchronous orbits, geostationary satellites

2 Oct 10.45 – 12.30 17, 18 Third-body perturbation, atmospheric drag, solar

radiation, thrust

4 Oct 10.45 – 12.30 19, 20 Eclipse, maneuvers

9 Oct 10.45 – 12.30 21, 22 Interplanetary flight

11 Oct 10.45 – 12.30 23, 24 Interplanetary flight

16 Oct 10.45 – 12.30 25, 26 Launcher, ideal vs. real flight, staging, design

18 Oct 10.45 – 12.30 27, 28 Exam practice

Page 4: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

3AE2104 Flight and Orbital Mechanics |

Page 5: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

4AE2104 Flight and Orbital Mechanics |

Page 6: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

5AE2104 Flight and Orbital Mechanics |

Page 7: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

6AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axis systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

Page 8: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

7AE2104 Flight and Orbital Mechanics |

Introduction

Newton’s laws only hold with respect to a frame of reference which is in absolute rest. This is called an inertial frame of reference

Coordinate systems translating uniformly to the frame of reference in absolute rest are also inertial frames of reference

A rotating frame of reference is not an inertial frame of reference

Newton’s laws

Page 9: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

8AE2104 Flight and Orbital Mechanics |

Introduction

• Derivation of equations of motion

• General 3 dimensional flight

• 2 dimensional flight with a wind gradient

• General approach!

Objective

Page 10: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

9AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axis systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

Page 11: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

10AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Earth axis system: {Eg}

1. Xg axis in the horizontal plane, orientation is arbitrary

2. Yg axis in the horizontal plane, orientation: perpendicular to Xg

3. Zg axis points downwards

Earth axis system

Page 12: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

11AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

2

2

'Centrifugal force'

e

e

W VC

g R h

C V

W R h g

Assumption 1: the earth is flat

Valid assumption

2

2

Example

100 [m/s]

6371 [km]

9.80665 [m/s ]

0 [m]

1000.00016

6371000 0 9.80665

(0.016%)

e

V

R

g

h

C

W

Assumption

Page 13: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

12AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Assumption 2: the earth is non-rotating

Assumptions

Page 14: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

13AE2104 Flight and Orbital Mechanics |

Page 15: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

14AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Moving earth axis system: {Ee}

1. Xe parallel to Xg axis but attached to c.g. of aircraft

2. Ye parallel to Yg axis but attached to c.g. of aircraft

3. Ze axis points downwards

Moving earth axis system

Page 16: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

15AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Body axis system: {Eb}

1. Origin is fixed to the aircraft c.g.

2. Xb lies in plane of symmetry and points towards the nose

3. Yb is perpendicular to the plane of symmetry and is directed to the right wing

4. Zb is perpendicular to Xb and Yb

Body axis system

Page 17: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

16AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesYaw angle (body axis)

Page 18: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

17AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesPitch angle (body axis)

Page 19: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

18AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesRoll angle (body axis)

Page 20: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

19AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

Air path axis system: {Ea}

1. Origin is fixed to the aircraft c.g.

2. Xa lies along the velocity vector3. Za taken in the plane of

symmetry of the airplane4. Ya is positive starboard

Air path axis system

Page 21: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

20AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesAzimuth angle (air path axis)

Page 22: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

21AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesFlight path angle (air path axis system)

Page 23: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

22AE2104 Flight and Orbital Mechanics |

Axis systems and Euler anglesAerodynamic angle of roll (air path axis system)

Page 24: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

23AE2104 Flight and Orbital Mechanics |

Axis systems and Euler angles

• Four axes systems can be defined

• Earth

• Moving Earth

• Body axes

• Air path axes

• Three Euler angles define the orientation of the aircraft (body

axes) Yaw Pitch Roll

• Three Euler angles define the orientation of the aircraft (body

axes) Azimuth Flight path Aerodynamic roll

• The sequence of the Euler angles is very important!!!

Summary

Page 25: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

24AE2104 Flight and Orbital Mechanics |

Page 26: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

25AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axis systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

Page 27: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

26AE2104 Flight and Orbital Mechanics |

Vector / matrix notation

X

Z

Y

P

r

i

kz

x

r xi yj zk

i, j and k are unit vectors along the axes

Page 28: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

27AE2104 Flight and Orbital Mechanics |

Vector / matrix notation

: Row

: Column

: Square matrix

i

r x i y j z k x y z j

k

x y z E

Page 29: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

28AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

Page 30: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

29AE2104 Flight and Orbital Mechanics |

Accelerations

dVa

dt

0 0 aV V E

0 0 0 0a a

dVV E V E

dt

?

What is the time derivative of the air path axis system?

Page 31: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

30AE2104 Flight and Orbital Mechanics |

Accelerations

x

yz

Xa

Ya

Za

i

j

k

-ky

jz

kx

-iz-jx

iy

0

0

0

z y

a z x a

y x

E E

0 z y

dii j k

dt

0 y x

dki j k

dt

0 z x

dji j k

dt

Time derivative of the air path axis system

Page 32: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

31AE2104 Flight and Orbital Mechanics |

Accelerations

0 0 0 0a a

dVV E V E

dt

0

0 0 0 0 0

0

z y

a z x a

y x

dVV E V E

dt

z y a

dVV V V E

dt

Page 33: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

32AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

Page 34: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

33AE2104 Flight and Orbital Mechanics |

Forces

F L D T W

0 0 0 1a eF T D L E W E

No sideslip

Assume thrust in direction of airspeed vector

Page 35: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

34AE2104 Flight and Orbital Mechanics |

ForcesSideslip angle

Page 36: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

35AE2104 Flight and Orbital Mechanics |

ForcesSideslip angle

Page 37: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

36AE2104 Flight and Orbital Mechanics |

Forces Sideslip angle

Page 38: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

37AE2104 Flight and Orbital Mechanics |

Forces

F L D T W

0 0 0 1a eF T D L E W E

Problem: different axis systems Express all forces in 1 axis system

Page 39: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

38AE2104 Flight and Orbital Mechanics |

Forces

{Ee}

{Ea}

Transformation matrices

Page 40: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

39AE2104 Flight and Orbital Mechanics |

Forces

Xe X1

Ye

Y1

1j

ej

1iei

1

1

1

cos sin 0

sin cos 0

0 0 1

e

e

e

i i

j j

k k

1

1

1

cos sin

sin cos

e e

e e

e

i i j

j i j

k k

1 eE T E

Rotation over azimuth angle ()

Page 41: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

40AE2104 Flight and Orbital Mechanics |

Forces

2i

1i

2k

X1

Z1

X2

Z2

1k 2 1E T E

cos 0 sin

0 1 0

sin 0 cos

T

2 1 1

2 1

2 1 1

cos sin

sin cos

i i k

j j

k i k

Rotation over flight path angle ()

Page 42: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

41AE2104 Flight and Orbital Mechanics |

2j

aj

2k

Y2

Ya

Z2

Ya

ak

2aE T E

1 0 0

0 cos sin

0 sin cos

T

2

2 2

2 2

cos sin

sin cos

a

a

a

i i

j j k

k j k

Rotation over aerodynamic angle of roll ()

Forces

Page 43: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

42AE2104 Flight and Orbital Mechanics |

Forces

{Ee}

{Ea}

Transformation matrices

Page 44: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

43AE2104 Flight and Orbital Mechanics |

Forces

a eE T T T E

1

2

e

e

a e

E T E

E T T E

E T T T E

1 1 1

e aE T T T E

Transformation matrices

Page 45: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

44AE2104 Flight and Orbital Mechanics |

Forces

1

1 1

. . . . . .

. . . . . .

. . . . . .

T

I

Properties of transformation matrices

Page 46: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

45AE2104 Flight and Orbital Mechanics |

Forces

0 0 0 1a e

F L D T W

T D L E W E

0 0 0 1T T T

a aF T D L E W T T T E

sin cos sin cos cos aF T D W W L W E

cos sin 0 cos 0 sin 1 0 0

0 0 1 0 0 1 sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

T T T

e aW E W E

0 0 1 sin cos sin cos cose aW E W W W E

All results combined

Page 47: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

46AE2104 Flight and Orbital Mechanics |

Equations of motion

F m a

sin cos sin cos cos aF T D W W L W E

z y a

dVa V V V E

dt

sin

cos sin

cos cos

z

y

T D W mV

W mV

L W mV

3 equations of motion!

Page 48: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

47AE2104 Flight and Orbital Mechanics |

Equations of motion

sin

cos sin

cos cos

sin

cos sin

cos cos

z

y

T D W mV

W mV

L W mV

mV T D W

mV L

mV L W

Using transformation matricesto convert x, y and z

Rewrite in traditional form

Page 49: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

48AE2104 Flight and Orbital Mechanics |

Equations of motion

1 1

1 aE T T E

cos 0 sin 1 0 0

0 0 0 1 0 0 cos sin

sin 0 cos 0 sin cos

aE

10 0 E

Conversion x, y, z to d/dt, d/dt, d/dt

sin cos sin cos cos aE

Page 50: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

49AE2104 Flight and Orbital Mechanics |

Equations of motion

1

2 aE T E

1 0 0

0 0 0 cos sin

0 sin cos

aE

20 0 E

Conversion x, y, z to d/dt, d/dt, d/dt

0 cos sin aE

Page 51: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

50AE2104 Flight and Orbital Mechanics |

Equations of motion

3 aE E

30 0 E

Conversion x, y, z to d/dt, d/dt, d/dt

0 0 aE

Page 52: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

51AE2104 Flight and Orbital Mechanics |

Equations of motion

sin cos sin cos cos cos sin

x y z a

a

E

E

Conversion x, y, z to d/dt, d/dt, d/dt

Page 53: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

52AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

Page 54: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

53AE2104 Flight and Orbital Mechanics |

Equations of motion

sin

cos sin

cos cos

mV T D W

mV L

mV L W

Final result

Page 55: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

54AE2104 Flight and Orbital Mechanics |

Content

• Introduction

• Axes systems and Euler angles

• Vector / matrix notation

• Accelerations

• Forces

• General equations of motion 3D flight

• Effect of a wind gradient

Page 56: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

55AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

An aircraft is flying from A to B over a distance of 1000 nautical miles. The True Airspeed of this aircraft is 120 knots (1kt = 1 nautical mile per hour). The aircraft is experiencing a constant headwind of 20 kts.

How long does it take to fly from A to B?

A. Less than 10 hours

B. 10 hours

C. More than 10 hours

Question

Page 57: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

56AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

Page 58: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

57AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

Page 59: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

58AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

g wV V V

(wind speed)wV

(ground speed)gr V

(airspeed)V

Xa

Xg

Zg

r

Page 60: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

59AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

0WdV

dt

Wind is not constant:

This lecture: only horizontal wind

( )WdVf H

dt

Page 61: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

60AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

g wV V V

ga V

g wa V V V

Absolute acceleration

So we need to define the velocity first

0 0 0 0g a w gV V E V E

The acceleration can be determined by taking the time derivative

0 0 0 0a w g

d da V E V E

dt dt

0 0 0 0 0 0 0 0a a w g w ga V E V E V E V E

Page 62: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

61AE2104 Flight and Orbital Mechanics |

0 0 0 0 0 0 0 0a a w g w ga V E V E V E V E

What are and ???a gE E

The ground axis system is at rest

0gE

However, the air path axis system is rotating and translating

Page 63: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

62AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

a

di

dt

dE j

dt

dk

dt

0 0d

k i j kdt

0 0d

i i j kdt

0 0 0d

j i j kdt

0 0 0 0

0 0 0 0 0 0

0 0 0 0

a a

di

dt id

E j j Edt

kd

kdt

Page 64: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

63AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

0 0 0 0 0 0 0 0a a w g w ga V E V E V E V E

0 0

0 0 0 0 0 0 0 0 0

0 0

a a w ga V E V E V E

0 0 0 0 0 0a a w ga V E V E V E

0 0 0a w ga V V E V E

Fill in the results

Write out

Simplify

Two axis systems…

Page 65: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

64AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

cos 0 sin

0 1 0

sin 0 cos

g aE E

cos 0 sing a a ai i j k

0 1 0g a a aj i j k

sin 0 cosg a a ak i j k

0 0 0a w ga V V E V E

cos 0 sin

0 0 0 0 1 0

sin 0 cos

a w aa V V E V E

Page 66: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

65AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

cos 0 sin

0 0 0 0 1 0

sin 0 cos

a w ga V V E V E

0 cos 0 sina w w aa V V E V V E

cos 0 sinw w aa V V V V E

Page 67: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

66AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

sin 0 cosa a aF T D W i j L W k

V

Zb

Ze

Xe

Xb

Xg

Zg

Xa

Za

D

W

T

Assumption: T // V

sin 0 cos aF T D W L W E

L

Page 68: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

67AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

sin 0 cos

cos 0 sin

g

a

w w a

F m V

F T D W W L E

a V V V V E

sin cos

0 0

cos sin

w

w

WT D W V V

g

WL W V V

g

Page 69: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

68AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

sin

cos w

H RC V

s V V

Page 70: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

69AE2104 Flight and Orbital Mechanics |

Effect of a wind gradient

Page 71: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

70AE2104 Flight and Orbital Mechanics |

Page 72: Flight and Orbital Mechanics - TU Delft OpenCourseWare · Semester 1 - 2012 Challenge the future Delft University of Technology Flight and Orbital Mechanics Lecture 7 –Equations

71AE2104 Flight and Orbital Mechanics |

Questions?