Top Banner
First Principles Thermoelasticity of Minerals Renata M. M. Wentzcovitch Department of Chemical Engineering and Materials Science U. of Minnesota, Minneapolis • First Principles Thermodynamics Method • Thermoelasticity of Mg(,Fe)SiO 3 Crystal structure(P,T) Elasticity: comparison with calculations and experiments Elasticity: comparison with PREM Logarithm ratios and lateral variations • Summary
36

First Principles Thermoelasticity of Minerals

Jan 14, 2016

Download

Documents

Angie

First Principles Thermoelasticity of Minerals. Renata M. M. Wentzcovitch. Department of Chemical Engineering and Materials Science U. of Minnesota, Minneapolis. • First Principles Thermodynamics Method • Thermoelasticity of Mg (,Fe) SiO 3 - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: First Principles Thermoelasticity of Minerals

First Principles Thermoelasticity of Minerals

Renata M. M. Wentzcovitch

Department of Chemical Engineering and Materials Science U. of Minnesota, Minneapolis

• First Principles Thermodynamics Method

• Thermoelasticity of Mg(,Fe)SiO3 Crystal structure(P,T)

Elasticity: comparison with calculations and experiments Elasticity: comparison with PREM Logarithm ratios and lateral variations

• Summary

Page 2: First Principles Thermoelasticity of Minerals

…``First Principles’’…

• Density Functional Theory ( , , )

• Local Density Approximation (Kohn and Sham,1965; Ceperley-Alder, 1985)

• First Principles Pseudopotentials (Troullier-Martins, 1991)

• Born-Oppenheimer Variable Cell Shape Molecular Dynamics (Wentzcovitch, 1991-3)

• Density Functional Perturbation Theory for Phonons (Gianozzi et al., 1991)

EH )]([ rnE

iiin *

Page 3: First Principles Thermoelasticity of Minerals

First Principles VCS-MD (Wentzcovitch, Martins, Price, PRL 1993)

Damped dynamics

)(~ PI),(~ int rffr

P = 150 GPa

MgSiO3

Page 4: First Principles Thermoelasticity of Minerals

Lattice

K Vo

dP

dV

Kth = 259 GPa K’th=3.9

Kexp = 261 GPa K’exp=4.0

(a,b,c)th < (a,b,c)exp ~ 1%

Tilt angles th - exp < 1deg

(• Wentzcovitch, Martins, & Price, 1993)

( Ross and Hazen, 1989)

Page 5: First Principles Thermoelasticity of Minerals

+

Mineral sequence II

Lower Mantle

(Mgx,Fe(1-x))O(Mg(1-x-z),Fex, Alz)(Si(1-y),Aly)O3

+

CaSiO3

Page 6: First Principles Thermoelasticity of Minerals

+

Mineral sequence II

Lower Mantle

(Mgx,Fe(1-x))O(Mgx,Fe(1-x))SiO3

Page 7: First Principles Thermoelasticity of Minerals

TM of mantle phases

Core T

Mantle adiabat

solidusHA

Mw

(Mg,Fe)SiO3

CaSiO3

peridotite

P(GPa)0 4020 60 80 100 120

2000

3000

4000

5000

T (

K)

(Zerr, Diegler, Boehler, Science1998)

Page 8: First Principles Thermoelasticity of Minerals

Thermodynamic Method

qj B

qjB

qj

qj

Tk

VTk

VVUTVF

)(exp1ln

2

)()(),(

• VDoS and F(T,V) within the QHA

PVTSFG TV

FP

VT

FS

N-th (N=3,4,5…) order isothermal (eulerian or logarithm) finite strain EoS

IMPORTANT: crystal structure and phonon frequencies depend on volume alone!!….

Page 9: First Principles Thermoelasticity of Minerals

equilibrium structure

kl

re-optimize

(Thermo) Elastic constant tensor

Pji

Tij

GPTc

2

),(

V

jiTij

Sij C

VTPTcPTc

),(),(

Tii

S

Page 10: First Principles Thermoelasticity of Minerals

Phonon dispersions in MgO

Exp: Sangster et al. 1970

(Karki, Wentzcovitch, de Gironcoli and Baroni, PRB 61, 8793, 2000)

-

Page 11: First Principles Thermoelasticity of Minerals

Phonon dispersion of MgSiO3 perovskite

Calc Exp

Calc Exp

Calc: Karki, Wentzcovitch, de Gironcoli, Baroni PRB 62, 14750, 2000

Exp: Raman [Durben and Wolf 1992] Infrared [Lu et al. 1994]

0 GPa

100 GPa

--

Page 12: First Principles Thermoelasticity of Minerals

Zero Point Motion Effect

Volume (Å3)

F (

Ry)

MgO

Static 300K Exp (Fei 1999)V (Å3) 18.5 18.8 18.7K (GPa) 169 159 160K´ 4.18 4.30 4.15K´´(GPa-1) -0.025 -0.030

-

-

Page 13: First Principles Thermoelasticity of Minerals

MgSiO3-perovskite and MgO

(gr/cm-3)

V (A3)

KT (GPa)

d KT/dP

d KT

2/dP2 (GPa-1)

d KT/dT (Gpa K-1)

10-5 K-1

3.580

18.80

159

4.30

-0.030

-0.014

3.12

Calc.

MW

3.601

18.69

160

4.15

~

-0.0145

3.13

Exp.

MW

4.210

164.1

247

4.0

-0.016

-0.031

2.1

Calc.

Pv

4.247

162.3

246 | 266

3.7 | 4.0

~

-0.02 | -0.07

1.7 | 2.2

Exp.

Pv

Exp.: [Ross & Hazen, 1989; Mao et al., 1991; Wang et al., 1994; Funamori et al., 1996; Chopelas, 1996; Gillet et al., 2000; Fiquet et al., 2000]

4.8

(256)

Page 14: First Principles Thermoelasticity of Minerals

Elasticity of MgO

(Karki et al., Science 1999)

Page 15: First Principles Thermoelasticity of Minerals

table

10.97

(Wentzcovitch et al, Phys. Rev. Lett (in press))

Page 16: First Principles Thermoelasticity of Minerals

Thermal expansivity and the QHA

(

10-5 K

-1)

provides an a posteriori criterion for the validity of the QHA

MgSiO3

Karki et al, GRL (2001)

Page 17: First Principles Thermoelasticity of Minerals

The QHA

Criterion: inflection point of (T)

Brown & Shankland’s T

invalid MgO

MgSiO3

Page 18: First Principles Thermoelasticity of Minerals

…IMPORTANT: structural parameters and phonon frequencies depend on volume alone!!

• Structures at high P are determined at T= 0

P(V,0)

• P’(V,T’) within the QHA

• At T 0… V(P’,T’)=V(P,0) structure(P’,T’) = structure(P,0)

Corresponding States

Page 19: First Principles Thermoelasticity of Minerals

Comparison with Experiments(Ross & Hazen, 1989)

77 K < T < 400K

0 GPa < P < 12 GPa

o

o

o

Calc.

Page 20: First Principles Thermoelasticity of Minerals

Comparison with Experiments(Ross & Hazen, 1989)

77 K < T < 400K

0 GPa < P < 12 GPa

o

o

o

Calc.

LDALDA+ZPExp.

1%

Page 21: First Principles Thermoelasticity of Minerals

Test: comparison with experiments

(Ross & Hazen)

0.003

0.05%

Page 22: First Principles Thermoelasticity of Minerals

Predictions4000 K3000 K2000 K1000 K 300 K

Page 23: First Principles Thermoelasticity of Minerals

cij

(Wentzcovitch et al, Phys. Rev. Lett. in press)

300 K1000K2000K3000 K4000 K

(Oganov et al,2001)

Cij(P,T)

Page 24: First Principles Thermoelasticity of Minerals

Velocities

V (

km/s

ec)

&

(g

r/cm

3 )

(Wentzcovitch et al, in press)

Page 25: First Principles Thermoelasticity of Minerals

Aggregate Moduli

38 GPa 88 GPa

Page 26: First Principles Thermoelasticity of Minerals

Effect of Fe alloying

(Kiefer,Stixrude, Wentzcovitch, GRL 2002)

(Mg0.75Fe0.25)SiO3

4

+ + +

||

Page 27: First Principles Thermoelasticity of Minerals

Pyrolite (20 V% mw)Perovskite

Brown & Shankland T

38 GPa 100 GPa

0.10<xFe<0.15

aaaa

aaaa41

Fepv

Femw

x

x

(Mg(1-x),Fex)SiO3

(Jackson,1998)

Wentzcovitch et al, PRL, in press)

Page 28: First Principles Thermoelasticity of Minerals

3D Maps of Vs and Vp

Vs V Vp

(Masters et al, 2000)

Page 29: First Principles Thermoelasticity of Minerals

RS / P lnVs

lnVP P

(MLDB-Masters et al., 2000)(KWH-Kennett et al., 1998)(SD-Su & Dziewonski, 1997)(RW-Robertson & Woodhouse,1996)

Lateral variations in VS and VP

(Karato & Karki, JGR 2001)

Page 30: First Principles Thermoelasticity of Minerals

R / S lnV

lnVS P

(MLDB-Masters et al., 2000)(SD-Su & Dziewonski, 1997)

Lateral variations in V and VP

(Karato & Karki, JGR 2001)

Page 31: First Principles Thermoelasticity of Minerals

Relations

RS / P 1

(1 A)R / S AP

A 4VS

2

3VP2

0.42 ≤ A ≤ 0.37with

R / S (S 1)

( 1)P

S lnKS

lnP

lnG

lnP

Page 32: First Principles Thermoelasticity of Minerals

Anderson Gruneisen parameters:

P

Ss

K

ln

ln

P

G

ln

ln

s

Page 33: First Principles Thermoelasticity of Minerals

Lateral heterogeneity ratio:

(MLDB-Masters et al., 2000)

MLDBR/

s

R

s/p

1/A

Page 34: First Principles Thermoelasticity of Minerals

R/s and R/p

R/

s

R/

p

CF

FWD

FDW’

FDW

ITIT- Ishi & Tromp, 1999CF-Cadek & Fleitout, 1999FDW & FDW’, Forte at al., 1993FWD, Forte at al., 1994

Page 35: First Principles Thermoelasticity of Minerals

Summary

• We are building a consistent body of knowledge about lower mantle phases using adequate methods.

• Inferences about LM based on current knowledge:

- Homogeneous LM based on (Mg(1-x),Fex)SiO3 and (Mg(1-y),Fex)O alone cannot explain PREM’s elastic gradients

- CaSiO3, (Mg(1-x-z) Alz,Fex,Alz)SiO3

- (Mg(1-y),Fey(20))O and y/x

• Anelasticity is less important in the LM than Karato estimated.

• Bonus: crystal structure of MgSiO3 at high P,T. Easiest way to test our predictions.

Page 36: First Principles Thermoelasticity of Minerals

Acknowledgements

Bijaya B. Karki (LSU)Stefano de Gironcoli (SISSA)Stefano Baroni (SISSA)Matteo Cococcioni (MIT)

Shun-ichiro Karato (U. of MN/Yale)

Funding: NSF/EAR, NSF/COMPRES