Top Banner
4-12 Jan. 2007 First Latin American SCAT Workshop Universidad T. F. Santa Maria, Valparaiso, Chile 0 First Latin American SCAT Workshop: Advanced Scientific Computing and Applications Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde
68

First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

Sep 16, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 0

First Latin American SCAT Workshop:Advanced Scientific Computing and Applications

Microfluidicsgas-phase flow at the micro-scale

Prof David EmersonCCLRC Daresbury Laboratory

University of Strathclyde

Page 2: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 1

Outline

• Gas dynamics for micro-systems• The Knudsen number• Slip flow – boundary treatment

– Rotating Couette flow– Flow past a micro-sphere– Oscillating devices

• Transition flow

Page 3: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 2

Introduction to gas flow in MEMS

• Rarefied (or non-equilibrium) gas flows have until recently been associated with low-densityapplications such as vacuum science and high-altitude applications, such as space vehicle technology.

• However, the advent of Micro-Electro-Mechanical Systems (MEMS) has opened up an entirely new area of research where non-equilibrium gas behaviour has become very important.

• MEMS can combine electrical, mechanical and fluidic components down to a characteristic length scale of 1 micron i.e. three orders of magnitude smaller than conventionally machined components.

• The small dimensions of MEMS imply that non-equilibrium effects are important for gas flows, even under atmospheric pressures.

Page 4: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 3

The Knudsen number Kn

• Kn = λ / L• Air at S.A.T.P: mean free path, λ ~ 10-7 m

device length L ~ 10-6 m

• Hence Kn ~ 0.1

• Rarefaction effects can be appreciable

• What does this imply?

• Navier Stokes equations in conjunction with no-slip boundary conditions not valid for many gas flows in MEMS

• Slip-flow boundary conditions are needed

• Mass flow rates, velocity gradients, wall shear stresses and hydrodynamic drag forces will be affected

Page 5: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 4

Knudsen number classification

• Euler equations (neglecting diffusion): Kn→0 & (Re→∞)

• Navier-Stokes equations (no-slip): Kn ≤ 10-3

• Navier-Stokes equations (slip): 10-3 ≤ Kn ≤ 10-1

• Transition regime: 10-1 ≤ Kn ≤ 10

• Free molecular flow: Kn > 10 (→∞)

• (see Schaaf and Chambre, 1961 or Gad-el-Hak, 1999)

Page 6: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 5

Describing the behaviour of a gas

The Knudsen number is a convenient way to describe the state of a gas

NSF starting to fail NSF no longer valid

Kn ~L xλ λ ρ

ρ∂

=∂

transitioncontinuum collisionless

Boltzmann equation

Euler NSF NSF+slip/jump

extendedthermodynamics DSMC

0 ← 0.001 0.1 10 → ∞

Kn

Page 7: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 6

Describing the behaviour of a gas

The Knudsen number is a convenient way to describe the state of a gas

NSF starting to fail NSF no longer valid

Kn ~L xλ λ ρ

ρ∂

=∂

transitioncontinuum collisionless

Boltzmann equation

Euler NSF NSF+slip/jump

extendedthermodynamics DSMC

area of interest

0.001 Kn 1.0≤ ≈

Page 8: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 7

Knudsen number – altitude variation

Hydraulic diameter, Dh (µm)

0.1 1 10 100

Knu

dsen

num

ber,

Kn

0.0001

0.001

0.01

0.1

1

10

Sea-level

10 km20 km

Page 9: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 8

Gas flow in micro-devices

Source: A. Beskok, Numerical Heat Transfer, Part B, 40, 451-471, 2001

Page 10: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 9

Tangential slip-velocity boundary conditions

• Non-equilibrium effects in the slip-flow regime can be taken into account by modifying the boundary treatment at the walls.

• The correct approach was developed by Basset (1888) who proposed that the tangential slip velocity could be modelled using an assumed linear relationship between the shear stress and the slip velocity at the wall:

• where τt is the tangential shear stress at the wall, ut is the slip-velocity and β is the slip-coefficient.

t tuτ = β

Slip flow between a pair of infinite parallel plates

(Kn=0.165)

Page 11: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 10

Tangential slip-velocity boundary conditions

Schaaf & Chambre (1961) demonstrated that Basset’s boundary treatment is equivalent to Maxwell’s first-order slip velocity equation, provided the slip coefficient, β, is related to the mean free path of the molecules, λ , as follows:

where µ is the coefficient of viscosity and σ is the tangential momentum accommodation coefficient (TMAC).

The slip velocity at the wall can thus be written as

β =− σ⎛ ⎞ λ⎜ ⎟σ⎝ ⎠

tt t

2uτ − σ λ⎛ ⎞= = τ⎜ ⎟β σ µ⎝ ⎠

Page 12: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 11

Tangential momentum accommodation coefficient

• The TMAC, σ, defines the proportion of gas molecules reflected diffusively

• For smooth walls: σ → 0 and for rough walls: σ = 1

• Silicon micro-machined components exhibit tangential momentum accommodation coefficients ranging from 0.8 to 1.0 (Arkilic et al., 1997)

Rough Wall: Diffuse Reflection (σ = 1)

Random scattering

θθ

Smooth Wall: Specular Reflection (σ = 0)

Page 13: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 12

Gas flow through micro-channels

Page 14: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 13

Schematic view of silicon micro-machined channel (Arkilic et al, 1997)

Parameter Value

Channel length 7500 µm

Channel width 52 µm

Channel height 1.33 µm

Outlet mean free path 0.219 µm

Temperature 314 K

Viscosity 20.66 x 10-6 Ns/m2

Specific gas constant 2077 J/KgK

Collision diameter 210 x 10-12 m

Outlet pressure (Po) 100.8 kPa

Pressure ratio (Pin / Po) 1.2 - 2.6

Outlet Mach number 0.5 - 4 x 10-4

Outlet Kn number 0.165

Reynolds number 0.5 - 4 x 10-3SEM of channel cross section

53.5 µm

51.0 µm

Validation against experimental data: flow of helium

Page 15: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 14

Pressure ratio (Pin/Po)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Mas

s flo

w ra

te (k

g/s)

0

1e-12

2e-12

3e-12

4e-12

5e-12

Continuum flow analysisNon-continuum flow analysisExperimental data (Arkilic et al.)

Helium mass flow rate through a silicon micro-channel

Page 16: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 15

Validation against experiment

• Extending the Navier-Stokes equations into the slip-flow regime (Kn ≤ 10-1) provides a significant improvement over the continuum (no-slip) approach.

• The Navier-stokes equations (with slip) provide reasonable predictions of the mass-flow rate for Knudsen numbers up to approximately Kn = 0.2.

• There have been numerous experiments considering the mass flow rates through micro-channels e.g. Pfahler et al. (1991), Harley et al. (1995), Arkilic et al. (1997, 2001), Maurer et al. (2003). However, to date, no experimental data is available for the velocity profile within the gas.

• There are also questions regarding the extension of the analysis to second-order accuracy in Knudsen number - and how to evaluate the slip velocity at sharp corners of the channel e.g. in a cavity.

Page 17: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 16

Gas flow in micro-bearings

Page 18: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 17

Cylindrical Couette flow

R2

R1

ω2

ω1

The classic test case of cylindrical Couette flow highlights some important and very non-intuitive behaviour at the micro-scale.

Page 19: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 18

Navier-Stokes solution for rotating Couette flow

In a cylindrical polar co-ordinate (r,θ) reference frame, the tangential momentum expression of the incompressible Navier-Stokes equations for rotating Couette flow can be written as [Schlichting]:

2

2

d u ud 0dr rdr

θ θ⎛ ⎞⎟⎜+ =⎟⎜ ⎟⎟⎜⎝ ⎠

The general solution for the velocity profile can be written as:

bu (r) arrθ = +

1 2 1 2A Ba and b .A B B A

ω − ω ω − ω= =

− −

Page 20: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 19

Rotating Couette flow: Navier-Stokes velocity profile

The interesting solution is when ω2 is zero i.e. when the outer cylinder is stationary and the inner cylinder is rotating.

1 1 1 2u (R ) R and u (R ) 0θ θ= ω =

This allows the values of A and B to be determined:

2 22 1

1 1A and BR R

= =

Page 21: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 20

Velocity field for continuum solution

Non-dimensional radial distance from inner cylinder, r/λ

0.0 0.5 1.0 1.5 2.0

Non

-dim

ensi

onal

tang

entia

l vel

ocity

0.0

0.2

0.4

0.6

0.8

1.0

Navier-Stokes no-slip solution

Figure shows the velocity profile that occurs in the continuum flow regime

Page 22: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 21

Rotating Couette flow at the micro-scale

We follow the same process with ω2 = 0 but the solution now employs Maxwell’s slip-velocity boundary condition e.g.

1

11 1 1

1 r R

du u(2 )u (R ) R

dr rθ θ

θ

=

− σ ⎛ ⎞= ω + λ −⎜ ⎟σ ⎝ ⎠

2

22 2 2

2 r R

du u(2 )u (R ) R

dr rθ θ

θ

=

− σ ⎛ ⎞= ω − λ −⎜ ⎟σ ⎝ ⎠

ω2 = 0

The values of A and B are now given by:

2 12 2

2 2 1 12 1

(2 ) (2 )1 2 1 2A 1 and B 1 .R RR R

⎛ ⎞ ⎛ ⎞− σ − σλ λ= − = +⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

Page 23: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 22

Velocity field for micro-scale solution

Non-dimensional radial distance from inner cylinder, r/λ

0.0 0.5 1.0 1.5 2.0

Non

-dim

ensi

onal

tang

entia

l vel

ocity

0.0

0.1

0.2

0.3

0.4

Navier-Stokes no-slip solutionNavier-Stokes with slipDSMC data

Figure shows an inverted velocity profile that can occur at the micro-scale

Page 24: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 23

Caveat: slip-flow over curved surfaces

Figure shows the effect of not including the uθ / r term in the velocity derivativeNon-dimensional radial distance from inner cylinder, r/λ

0.0 0.5 1.0 1.5 2.0

Non

-dim

ensi

onal

tang

entia

l vel

ocity

0.0

0.1

0.2

0.3

0.4

Navier-Stokes no-slip solutionNavier-Stokes with slipNavier-Stokes with incorrect slip solutionDSMC data

Correct slip b.c.1

11 1 1

1 r R

du u(2 )u (R ) Rdr r

θ θθ

=

− σ ⎛ ⎞= ω + λ −⎜ ⎟σ ⎝ ⎠

Page 25: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 24

Caveat: slip-flow over curved surfaces

Figure shows the effect of not including the uθ / r term in the velocity derivativeNon-dimensional radial distance from inner cylinder, r/λ

0.0 0.5 1.0 1.5 2.0

Non

-dim

ensi

onal

tang

entia

l vel

ocity

0.0

0.1

0.2

0.3

0.4

Navier-Stokes no-slip solutionNavier-Stokes with slipNavier-Stokes with incorrect slip solutionDSMC data

Correct slip b.c.1

11 1 1

1 r R

du u(2 )u (R ) Rdr r

θ θθ

=

− σ ⎛ ⎞= ω + λ −⎜ ⎟σ ⎝ ⎠

Incorrect slip b.c.1

11 1 1

1 r R

du(2 )u (R ) Rdr

θθ

=

− σ= ω + λ

σ

Page 26: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 25

1 28 1

18

R 3 and R 5

5.17 10 rads

6.25 10 mKn 0.5

= λ = λ

ω = ×

λ = ×=

Comparison against DSMC data

Non-dimensional distance, (r - R1)/(R2 - R1)0.0 0.2 0.4 0.6 0.8 1.0

Non

-dim

ensi

onal

tang

entia

l vel

ocity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DSMC data σ = 1.0DSMC data σ = 0.7DSMC data σ = 0.4DSMC data σ = 0.1Analytical solution σ = 1.0Analytical solution σ = 0.7Analytical solution σ = 0.4Analytical solution σ = 0.1

Cross-over position

Source of DSMC data:K.W. Tibbs, F. Baras and A.L. Garcia, “Anomalous flow profile due to the curvature effect on slip length”, Phys. Rev. E 56,pp. 2282-2283, 1997.

Page 27: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 26

Cross-over position

The family of velocity profiles in the previous figure pass through a common point that is independent of the value of the TMAC. Using the Navier-Stokes equations, it can be shown that the cross-over point occurs at:

For the current problem (R1=3λ and R2=5λ), this location is at . The DSMC data show the same phenomenon although the location and velocity magnitude is slightly different.

r / 19λ =

3 31 2

1 2

R RrR R+=+

Page 28: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 27

Impact of the TMAC on the velocity profile

The criterion for the occurrence of a fully-inverted velocity profile can be shown to be:

while, the criterion for the occurrence of a partially-inverted velocity profile can be shown to be:

NB: The inversion only comes from the TMAC at the outer cylinder.

( ) 12 21 2 2

2 21

R R R2 1

2 R

−⎛ ⎞+⎜ ⎟σ < +⎜ ⎟λ⎝ ⎠

( ) 1 12 21 2 2 2

221

R R R R2 1 2 12 R

− −⎛ ⎞+ ⎛ ⎞⎜ ⎟+ < σ < +⎜ ⎟⎜ ⎟λ λ⎝ ⎠⎝ ⎠

Page 29: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 28

Limiting cases

An interesting solution can be obtained for σ1 = 1 and σ2 → 0

The non-dimensionalised velocity profile is:

i.e. at the inner wall, the gas exhibits no-slip whilst at the outer wall the velocity

exceeds the driving velocity by the factor R2/R1

This is a very non-intuitive result that has now been backed up by DSMC.

1 1 1

u (r) rR R

θ →ω

Page 30: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 29

Non-dimensional distance, (r - R1)/(R2 - R1)0.0 0.2 0.4 0.6 0.8 1.0

Non

-dim

ensi

onal

tang

entia

l vel

ocity

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

DSCM data σ1 = 1 ; σ2 = 0Navier-Stokes (analytical solution)

Comparison against DSMC data

DSMC data courtesy of Prof. Stefan Stefanov, Dept. of Complex and Multiphase Flows, Institute of Mechanics, Sofia, Bulgaria

1 2

1 2

8 11

8

1 ; 0i

R 3 and R 5

.e. spe

5.17 10 ra

cular re

ds

6.25 10 m

flection on outer cylind

Kn 0

e

.

r

5

= λ = λ

ω = ×

λ =

= σ =

×=

σ

uθ ∝ r(gas rotates like a solid body)

The system is shear-free for σ2 = 0 and is in agreement with DSMC predictions.

Page 31: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 30

Comparison against DSMC data: effect of varying σ2

Non-dimensional distance, (r - R1)/(R2 - R1)0.0 0.2 0.4 0.6 0.8 1.0

Non

-dim

ensi

onal

tang

entia

l vel

ocity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7 DSMC σ2 = 0DSMC σ2 = 0.02DSMC σ2 = 0.06DSMC σ2 = 0.10DSMC σ2 = 0.12DSMC σ2 = 0.14DSMC σ2 = 0.16DSMC σ2 = 0.18DSMC σ2 = 0.20DSMC σ2 = 0.25DSMC σ2 = 0.30NS σ2 = 0NS σ2 = 0.02NS σ2 = 0.06NS σ2 = 0.10NS σ2 = 0.12NS σ2 = 0.14NS σ2 = 0.16NS σ2 = 0.18NS σ2 = 0.20NS σ2 = 0.25NS σ2 = 0.30

σ1 = 1

DSMC data courtesy of Prof. Stefan Stefanov, Dept. of Complex and Multiphase Flows, Institute of Mechanics, Sofia, Bulgaria

Page 32: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 31

Flow past an unconfined micro-sphere

Stokes’ 1st problem

Page 33: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 32

Isothermal slip flow past an unconfined sphere

• Isothermal slip flow past an unconfined sphere at very low Reynolds and Mach numberswas first analysed by Basset (1888) using Stokes’ creeping flow approximation.

• In continuum (no-slip) flows, it can be shown that the normal stress must vanish along any rigid no-slip impermeable boundary.

• In contrast, the tangential slip boundary condition associated with microflows generates a normal stress term that causes an additional force on the sphere.

• The total drag force (DT) is therefore composed of three separate components, namely:

– skin friction drag (DS)

– pressure (or form) drag (DP)

– normal stress drag (DN).

T S P ND D D D⎫⎪ = + +⎬⎪⎭

Page 34: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 33

Example of tangential slip-velocity boundary condition

Consider axisymmetric flow past an unconfined sphere:In spherical coordinates, the shear stress on the sphere can be found from:

Hence, the slip-velocity boundary condition can be expressed as:

1 1 rr

u uur r rθ

θ θ∂ ∂⎛ ⎞τ = µ − +⎜ ⎟∂ ∂θ⎝ ⎠

=0 on surface of sphere

2 12=

θθ θ

∂− σ λ − σ ⎛ ⎞⎛ ⎞= τ = λ⎜ ⎟ ⎜ ⎟σ µ σ ∂⎝ ⎠ ⎝−

⎠rr a

r a

ur

uur

Many flow models implementing Maxwell’s slip velocity treatment fail to account for this term

Sphere

Uniform flow stream

Page 35: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 34

Basset’s slip-flow solution for flow past a sphere

S(2 )Skin-friction drag, D 4 Ua 1 3 Kn− σ⎛ ⎞= πµ +⎜ ⎟σ⎝ ⎠

P(2 ) (2 )Pressure drag, D 2 U a 1 2 Kn 1 3 Kn− σ − σ⎛ ⎞ ⎛ ⎞= π µ + +⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

N(2 ) (2 )Normal stress drag, D 4 Ua 2 Kn 1 3 Kn− σ − σ⎛ ⎞ ⎛ ⎞= πµ +⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

T(2 ) (2 )Total drag, D 6 Ua 1 2 Kn 1 3 Kn− σ − σ⎛ ⎞ ⎛ ⎞= πµ + +⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

where Knaλ

=Stokes’ original drag equation is recovered as Kn → 0

Page 36: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 35

Comparison of non-dimensionalised drag force

Kn = λ/a

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Non

-dim

ensi

onal

ised

dra

g

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Millikan's experimentNavier-Stokes slip-flow solutionGrad's 13 moment equationsBeresnev kinetic theorySone and Aoki kinetic theory (K=1)Sone and Aoki kinetic theory (K=0)

Non-dimensionalised drag as a function of Knudsen number

Page 37: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 36

Effect of omitting uθ / r for flow past an unconfined sphere

Knudsen number, Kn = λ/a

0.00 0.02 0.04 0.06 0.08 0.10

Dra

g fo

rce/

(6πµ

Ua )

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Correct slip b.c.Incorrect slip b.c.

Total drag, DT

Skin friction drag, DS

Predicted drag on an unconfined sphere

( σ = 0.1 )

Source: R.W. Barber, Y. Sun, X.J. Gu, D.R. Emerson, “Isothermal slip flow over curved surfaces”, Vacuum, 76(1), pp. 73-81, 2004.

Page 38: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 37

Are quantum effects important - revisited

• We know that Newton’s second law breaks down under certain conditions which means that the Navier-Stokes equations are no longer appropriate. For gases, the Knudsen number guides us. There are two other areas where Newton’s laws are no longer appropriate: one case concerns special relativity which is not an issue for MEMS. The other case is quantum theory.

• Quantum effects are important when a particle’s de Broglie wavelength is comparable to a typical length scale of the system:

where h is Planck’s constant, p is the particle’s momentum, which for nonrelativistic gases moving at ~500 m/s, gives λ = 0.2Å.

h hp mv

λ = =

Page 39: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 38

Drag of sphere in the free-molecular regime

• Previously, we found that quantum effects are not important unless the length scale was very small – what about in the high Kn range?

• In the free-molecular regime, Kn → ∞ i.e. the mean free path becomes very large.

• Recently, a paper by Drosdoff et al. has shown that quantum mechanical diffraction scattering theory is needed for ultra-dilute gases where the mean free path of a gas molecule is large compared to the sphere radius. A substantial change in the drag force was obtained.

Page 40: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 39

Limitations of the Navier-Stokes equations for gas microflows

• Extending the Navier-Stokes equations into the slip-flow regime (Kn ≤ 10-1) provides a significant improvement over the continuum (no-slip) approach.

• However, it has been shown that the drag predictions in the slip-flow regime quickly deviate from the experimental data when the Knudsen number approaches 10-1.

• On the other hand, results derived from kinetic theory agree reasonably well with experimental observations over the whole Knudsen number regime.

• We need to develop ways of extending beyond the slip-flow regime.

Page 41: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 40

Developing boundary conditions for planar channel flow

The experimental work has been complemented by theoretical studies of 1st and 2nd order treatment at the solid boundary

A number of experiments have been conducted that consider the mass flow rates through micro-channels

• Pfahler et al. (1991)

• Harley et al. (1995)

• Arkilic et al. (1997, 2001)

• Lalonde et al. (2001)

• Maurer et al. (2003)

These investigations have confirmed that the NSF equations must be modified to account for velocity-slip at the wall.

∂ ∂− = ± −

∂ ∂

2

s w 1 2 2

u uu u A Ay y

− σ⎛ ⎞= α λ⎜ ⎟σ⎝ ⎠1

2A

The evaluation of A1 remains a problem. Following Maxwell, α is unity, but from kinetic theory, α = 1.146. It arises from the velocity defect and clearly affects the value of the TMAC (σ) and also A2

New experimental work underway with Gilbert Meolans group in France

Page 42: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 41

Planar channel flow: 2nd order & difficulties

Lang 1.432 T

Schamberg 1.31 T

Deissler 1.125 T

Cercignani 0.98 T

Hadjiconstantinou 0.31 T

Maurer et al. 0.23-0.26 E

Lockerby et al. 0.19 T

Sreekanth 0.14 E

Beskok & Karniadakis -0.5 T

The table illustrates the problem of choosing the “correct” value for A2

∂ ∂− = ± −

∂ ∂

2

s w 1 2 2

u uu u A Ay y

D.A. Lockerby, J.M. Reese, D.R. Emerson and R.W. Barber, “The velocity boundary condition at solid walls in rarefied gas calculations”, Phys. Rev E, Vol. 69(6), 2004.

See also R.W. Barber and D.R. Emerson, “Challenges in modeling gas-phase flow in microchannels: from slip to transition.”, Heat Transfer Engineering, V27 (4): 3-12, 2006

Page 43: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 42

Example of theoretical treatment for 2nd order

Extension of the slip-velocity boundary treatment to second-order accuracy. Various formulations are reported in the literature:

== = = =

⎡ ⎤− σ ∂ ∂ ∂ ∂⎢ ⎥= + λ − λ + +σ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

2 2 22

wallz 0 2 2 2z 0 z 0 z 0 z 0

2 u 9 u u uu U 2z 16 z x y

(Deissler, Aubert and Colin)

An alternative approach would be to employ the stress tensor from higher-order constitutive relations (e.g. Burnett equations) so that the analysis is locally second-order in Kn. This is discussed in the following paper:

D.A. Lockerby, J.M. Reese, D.R. Emerson and R.W. Barber, “The velocity boundary condition at solid walls in rarefied gas calculations”, in Phys. Rev E, Vol. 70 017303, 2004.

− σ λ γ −= + τ −

σ µ γMB

slip wall x x(2 ) 3 ( 1) Pru u q

4 p⎡ ⎤µ ∂ ∂ ∂ ∂ ∂

= − γ + − γ + − γ + +⎢ ⎥ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

2 2 2 2 2 2MBx 2 2 2

u v w u uq (61 45 ) (49 45 ) (49 45 ) 12 128 x x n x z n z

Page 44: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 43

The Knudsen layer

All analyses so far have assumed that the linear stress/strain relationship of the NSF equations holds throughout the domain.

The Knudsen layer forms a nonlinear region close to the wall ~ 1 mean free path thick. It has a dramatic effect on the flow.

O(λ)

2nd order approaches only capture the increased mass flow rate because the slip-velocity is increased.

With 2nd order treatment

Page 45: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 44

A further issue for gaseous transport in MEMSIntermolecular spacing δ/d

101102

Cha

ract

eris

tic le

ngth

L (m

)

10-8

10-7

10-6

10-5

10-4

10-3

Pressure ratio p/p0

10-4 10-3 10-2 10-1 100 101 102

L/d

102

103

104

105

106

δ/d = 7L/δ = 100Kn = λ/L = 0.1

Densegas

DilutegasThermodynamic

equilibrium

Thermodynamicdisequilibrium

Negligible statisticalfluctuations

Significant statisticalfluctuations

L = 1 µm

L = 0.1 µm

The figure shows an updated version of a plot (for air) developed by Bird.

The shaded region is the limit for where the NSF equations can be safely applied. Below that line thermodynamic equilibrium breaks down, followed by the continuum assumption.

Potentially, there are real problems for MEMS.

δ = mean intermolecular spacingd = mean molecular diameter (4.1 × 10−10 m)

Page 46: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 45

Moving beyond the NSF equations

Page 47: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 46

Boltzmann equation

The Boltzmann equation provides the fundamental description of a gas at all values of the Knudsen number, provided

the gas is diluteonly binary collisions take place

( )

( )

1 2

1 2 3 1 2 3

,

, , , , , ,

ii

f f J f ft x

f f x x x t

ξ

ξ ξ ξ

∂ ∂+ ⋅ =

∂ ∂

=

where f is the molecular distribution function and J is the collision operator.

This integro-differential equation is difficult to solve. Some good numericalresults for Couette and Poiseuille flow (useful to validate codes). Alternative approaches (DSMC) are very poor at low speed and low Kn

Page 48: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 47

A possible option: extended thermodynamics

The approach offers a number of advantages:

• continuum formulation retained

• computational cost similar to conventional CFD

• globally second-order (or higher) in Knudsen number

• reduces to NSF equations under appropriate conditions

The disadvantages are that:

• equations highly non-linear and often unstable (e.g. Burnett)

• higher-order boundary conditions are required

• extending to complex molecules & thermochemistry unresolved

• precise Knudsen number range often not known

We have recently implemented the R13/R26 moment equations and they are now being tested and evaluated for a range of problems.

Page 49: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 48

Chapman-Enskog expansion

( ) ( ) ( )0 1 22 .........f f f fε ε= + + +Expand distribution function about a small parameter, ε

Zeroth-order expansion yields Euler equations

First-order expansion yields NSF equations

Second-order expansion yields Burnett equations

Higher-order expansions yield super-Burnett, augmented Burnett,…….

( ) ( ) ( )

( ) ( ) ( )

0 1 2

0 1 2Q Q Q Q

Π = Π + Π + Π +

= + + +

Viscous stress tensor

Heat flux vector

Page 50: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 49

Method of Moments

Multiply Boltzmann equation by a molecular property, Φ, and integrate over velocity space

0i i ii

f d f d It x

ξ ξ ξ Φ

∂ ∂Φ + Φ = =

∂ ∂∫ ∫i.e. total mass, momentum, energy are collision invariant.

mΦ = → Conservation of mass

imξΦ = → Conservation of momentum etc.

Page 51: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 50

Method of Moments vs Chapman-Enskog

• Chapman-Enskog expansion– Advantage: boundary conditions can be specified– Disadvantage: high-order derivatives, unstable for short wavelegths

• Grad’s Method of Moments– Advantage: low-order derivatives– Disadvantage: boundary conditions difficult to specify,

higher moments appear in truncation

Page 52: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 51

Extended thermodynamics using method of moments

• Recent work has focused on extending the NSF methodology using the regularized 13 & 26 moment equations

• Results to be presented will show there is a significant improvement compared to the NSF method (for slip flow) and gives good results for transition flow (0.1 ≤ Kn ≤~1.0)

• Two cases will be considered: Couette flow, Poiseuille flow

• Note: no boundary conditions have been developed for confined flow problems. We used DSMC to obtain data to “tune” the boundary conditions

•See XJ Gu and DR Emerson, A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions, to appear in Journal of Computational Physics

Page 53: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 52

Example of boundary treatment for method of moments

Start by expanding distribution function in Hermite polynomials e.g.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 30 0 1 1 2 2

0

1 1 1 .....! 2! 3!

n nM A a M i i ij ij ijk ijk

nf f a H f a H a H a H a H

n

=

⎛ ⎞= = + + + +⎜ ⎟⎝ ⎠

where fM is the local Maxwellian distribution function.Basically, require 7 boundary conditions with coefficients i.e.

12 122 11

22 2 5s u

m qRTup p pα α α

σα πβα−

= − − −

22 22 222230 72 840 24

Rp pRT RTα

σ φ+ ∆= + − −

DSMC used to determine variables and find coefficients

Page 54: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 53

Some results for planar Couette flow - velocity

0

20

40

60

80

100

u (m

/s)

u (m

/s)

(a) Kn=0.1

0.0 0.1

5

15

(b) Kn=0.5

0.0 0.25 0.5 0.75 1.0

y/Hy/H

(d) Kn=1.0

Predicted velocity profiles at a range of Knudsen numbers.

Initial conditions: = 273 K and = 100 m/s. Symbols DSMC, R26, R13B, NSF

At ~ Kn = 0.75, R13B develops some non-physical wiggles.

Note: R13B does not capture Knudsen layers – profile linear at Kn = 0.5

NSF

Page 55: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 54

Some results for planar Couette flow - temperature

273

274

275

276

277

278

279

T (

K)

T (

K)

(a) Kn=0.1 (b) Kn=0.5

0.0 0.25 0.5 0.75 1.0

y/Hy/H

273

274

275

276

277

278

279

T (

K)

T (

K)

(c) Kn=0.75

NSF

R13B

Anomalous behaviour

Predicted temperature profiles at a range of Knudsen numbers.

Symbol DSMC, R26, R13B, NSF

NSF always underpredicts. At Kn = 0.5, temperature profile wiggle (feeds back into velocity profile).

Page 56: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 55

Some results for planar Couette flow – heat flux

-4.0

-2.0

0.0

2.0

4.0

q x &

q &

qy (

W/m

(W

/m2 )

qy

qx

(a) Kn=0.1

qy

qx

(b) Kn=0.5

0.0 0.25 0.5 0.75 1.0

y/Hy/H

qy

qx

(d) Kn=1.0

Predicted heat flux profiles at a range of Knudsen numbers.

Symbol DSMC

NSF always predicts zero tangential heat flux. However, nonequilibrium flows exhibit this phenomena without a temperature gradient.

At Kn = 1, R26 starts to indicate problems. Similar plots for stress.

Page 57: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 56

Some results for planar Couette flow – velocity-slip

0.01 0.02 0.04 0.07 0.1 0.2 0.4 0.7 1.0

Kn

0.0

0.1

0.2

0.3

0.4u s

lip/

u w

NSF

R26

Normalised velocity-slip

Page 58: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 57

Some results for Poiseuille flow – velocity profile

0.0

0.3

0.6

0.9

1.2

1.5

1.8

u/u

o

(c) Kn=0.451

-0.5 -0.25 0.0 0.25 0.5

y/H

(f) Kn=1.128

NSF

R13B

NSF

DSMC

At Kn = 0.451, R13B develops spurious overshoots.

Note overprediction/underprediction by NSF

Page 59: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 58

Some results for Poiseuille flow – Knudsen layer contribution

-0.5 -0.25 0.0 0.25 0.5

y/H

0.0

0.05

0.1

0.15

0.2

0.25

u Kla

yer/u

o

0.2260.1130.050.01

Kn

Kn(a)

-0.5 -0.25 0.0 0.25 0.5

y/H

0.3380.4510.81.0

Kn

Kn(b)

At low Kn, contribution restricted to near-wall and remains constant throughout flow. As Kn increases, Knudsen layers interact and contribution starts to diminish.

Page 60: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 59

Some results for Poiseuille flow

0.04 0.07 0.1 0.2 0.4 0.7 1.0 2.0 4.0

Kn

0

1

2

3u s

lip/

u o &

um

ax/u

o

uslip/uo

umax/uo

Predicted slip and maximum velocities at different values of Kn.Symbol: Boltzmann equation (Ohwada et al. 1989), solid R26, dashed NSF

Page 61: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 60

Some results for Poiseuille flow – mass flow rate

0.01 0.03 0.06 0.1 0.3 0.6 1.0 3.0

Kn

0

25

50

75

100pe

rcen

tage

Qbulk/Q Qslip/Q

QKlayer/Q

Percentages of mass flow rate contribution to the total mass flow rate from bulk flow, Knudsen layer and slip velocity for the R26 equations

Page 62: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 61

Concluding remarks

• Talk has highlighted some interesting challenges in modelling gas flow in MEMS

• The NSF equations have limited applicability in the slip- and transition-flow regimes

• We have implemented the 26 moment equations and results are promising

• Higher-order systems could be developed (e.g. 48 moment)

Page 63: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 62

Acknowledgements

Special thanks go to:

• Robert Barber (Daresbury)

• Xiaojun Gu (Daresbury)

• Simon Mizzi (Daresbury)

• Jason Reese (Strathclyde)

• Duncan Lockerby (Warwick)

• Rho Shin Myong (Korea)

• Stefan Stefanov (Bulgaria)

• Yonghao Zhang (Daresbury)

Page 64: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 63

Damping

Page 65: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 64

Damping and Kn

• Damping represent a real practical problem for understanding andpredicting resonant frequencies of sensors.

• A typical model device is the Tang resonator:• The resonator consists of a

rotor/stator connection• We need to predict Q factors

throughout the Kn regime

Figure courtesy A. Frangi (Milan)

Page 66: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 65

Damping types

• There are 3 damping effects:– Thermoelastic damping (under very low pressures)– Squeeze film damping (at the ends)– Laterally oscillating damping (Couette flow)

Air damping

Figure courtesy A. Frangi (Milan)

Page 67: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 66

Damping in slip-flow regime - curvature

Results here are for Stokes’ second problem but for a curved surface.

Many resonators are curved and need to understand curvature.

u/u0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

y.(ω

/ν)1/

2

0

1

2

3

4

5

6

7

8

Planar solution Cylindrical solution Velocity amplitude - planar solutionVelocity amplitude - cylindrical solution

R1= (ν/ω)1/2

Kn=0.1

u/u0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

y.(ω

/ν)1/

2

0

1

2

3

4

5

6

7

8

Planar solution Cylindrical solution Velocity amplitude - planar solutionVelocity amplitude - cylindrical solution

R1=30 (ν/ω)1/2

Kn=0.1

Page 68: First Latin American SCAT Workshop · 2015. 5. 14. · Microfluidics gas-phase flow at the micro-scale Prof David Emerson CCLRC Daresbury Laboratory University of Strathclyde. 4-12

4-12 Jan. 2007First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 67

First Latin American SCAT Workshop:Advanced Scientific Computing and Applications

Microfluidicsgas-phase flow at the micro-scale

Prof David EmersonCCLRC Daresbury Laboratory

University of Strathclyde