Top Banner

of 34

Finite Element Method for Professionals

Jun 04, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/13/2019 Finite Element Method for Professionals

    1/34

    1

    Finite Element Method

    THE FINITE ELEMENT

    METHOD

    for readers of all backgrounds

    G. R. Liu and S. S. Quek

    CHAPTER 3:

  • 8/13/2019 Finite Element Method for Professionals

    2/34

    Finite Element Method by G. R. Liu and S. S. Quek2

    CONTENTS STRONG AND WEAK FORMS OF GOVERNING EQUATIONS

    HAMILTONS PRINCIPLE

    FEM PROCEDURE

    Domain discretization

    Displacement interpolation

    Formation of FE equation in local coordinate system

    Coordinate transformation

    Assembly of FE equations

    Imposition of displacement constraints

    Solving the FE equations

    STATIC ANALYSIS EIGENVALUE ANALYSIS

    TRANSIENT ANALYSIS

    REMARKS

  • 8/13/2019 Finite Element Method for Professionals

    3/34

    Finite Element Method by G. R. Liu and S. S. Quek3

    STRONG AND WEAK

    FORMS OF GOVERNING

    EQUATIONS System equations:strong form, difficult to solve.

    Weakform: requires weaker continuity on thedependent variables (u, v, win this case).

    Weak form is often preferred for obtaining anapproximated solution.

    Formulation based on a weak form leads to a setof algebraic system equationsFEM.

    FEM can be applied for practical problems withcomplex geometry and boundary conditions.

  • 8/13/2019 Finite Element Method for Professionals

    4/34

    Finite Element Method by G. R. Liu and S. S. Quek4

    HAMILTONS PRINCIPLE

    Of all the admissibletime histories of

    displacement the most accurate solution makes the

    Lagrangian functional a minimum.

    An admissible displacement must satisfy:

    The compatibility equations

    The essential or the kinematic boundary conditions

    The conditions at initial (t1) and final time (t2)

  • 8/13/2019 Finite Element Method for Professionals

    5/34

  • 8/13/2019 Finite Element Method for Professionals

    6/34

    Finite Element Method by G. R. Liu and S. S. Quek6

    FEM PROCEDURE

    Step 1: Domain discretization

    Step 2: Displacement interpolation

    Step 3: Formation of FE equation in local coordinatesystem

    Step 4: Coordinate transformation

    Step 5: Assembly of FE equations

    Step 6: Imposition of displacement constraints Step 7: Solving the FE equations

  • 8/13/2019 Finite Element Method for Professionals

    7/34Finite Element Method by G. R. Liu and S. S. Quek7

    Step 1: Domain discretization

    The solid body is divided into Ne elements with properconnectivitycompatibility.

    All the elements form the entire domain of the problemwithout any overlappingcompatibility.

    There can be different types of element with differentnumber of nodes.

    The density of the mesh depends upon the accuracyrequirement of the analysis.

    The mesh is usually not uniform, and a finer mesh is oftenused in the area where the displacement gradient is larger.

  • 8/13/2019 Finite Element Method for Professionals

    8/34Finite Element Method by G. R. Liu and S. S. Quek8

    Step 2: Displacement interpolation

    Bases on local coordinate system, the displacement within

    element is interpolated using nodal displacements.

    eii

    n

    i

    zyxzyxzyxd

    dNdNU ),,(),,(),,(1

    1

    2

    displacement compenent 1

    displacement compenent 2

    displacement compenentf

    i

    n f

    d

    d

    d n

    d

    1

    2

    displacements at node 1

    displacements at node 2

    displacements at noded

    e

    n dn

    d

    dd

    d

  • 8/13/2019 Finite Element Method for Professionals

    9/34Finite Element Method by G. R. Liu and S. S. Quek9

    Step 2: Displacement interpolation

    Nis a matrix ofshape functions

    1 2( , , ) ( , , ) ( , , ) ( , , )

    for node 1 for node 2 for node

    dn

    d

    x y z x y z x y z x y z

    n

    N N N N

    fin

    i

    i

    i

    N

    NN

    000

    000

    000000

    2

    1

    Nwhere

    Shape functionfor each

    displacement

    component at a

    node

  • 8/13/2019 Finite Element Method for Professionals

    10/34Finite Element Method by G. R. Liu and S. S. Quek10

    Displacement interpolation

    Constructing shape functions

    Consider constructing shape function for

    a single displacement component

    Approximate in the form

    1

    ( ) ( ) ( )

    dn

    hi i

    i

    Tu p

    x x p x

    1 2 3={ , , , ......, }

    d

    T

    n

    p

    T

    (x)={1,x,x

    2

    ,x

    3

    ,x

    4

    ,...,x

    p

    } (1D)

  • 8/13/2019 Finite Element Method for Professionals

    11/34Finite Element Method by G. R. Liu and S. S. Quek11

    Pascal triangle of monomials: 2D

    xy

    x

    2

    x3

    x4

    x5

    y

    2

    y3

    y4

    y5

    x2y

    x3y

    x4y x y

    xy2

    xy3

    xy

    x2y

    3

    x y

    Constant terms: 1

    x y

    1

    Quadratic terms: 3

    Cubic terms: 4

    Quartic terms: 5

    Quintic terms: 6

    Linear terms: 2

    3 terms

    6 terms

    10 terms

    15 terms

    21 terms

    2 2( ) ( , ) 1, , , , , ,..., ,

    T T p px y x y xy x y x y p x p

  • 8/13/2019 Finite Element Method for Professionals

    12/34Finite Element Method by G. R. Liu and S. S. Quek12

    Pascal pyramid of monomials : 3D

    x

    x2

    x3

    x

    4

    2

    3

    4

    xy

    xz z

    x2y xy

    2

    x2z y

    2

    2

    xz2 z

    2

    xyz

    3

    x3y

    x3z

    x

    2

    y

    2

    x2z2x2yz

    xy3

    y3

    2y

    2

    xy2zxyz

    2

    xz3

    43y

    1Constant term: 1

    Linear terms: 3

    Quadratic terms: 6

    Cubic terms: 10

    Quartic terms: 15

    4 terms

    10 terms

    20 terms

    35 terms

    2 2 2

    ( ) ( , , ) 1, , , , , , , , , ,..., , ,

    T T p p p

    x y z x y z xy yz zx x y z x y z p x p

  • 8/13/2019 Finite Element Method for Professionals

    13/34Finite Element Method by G. R. Liu and S. S. Quek13

    Displacement interpolation

    Enforce approximation to be equal to the nodal

    displacements at the nodes

    di = pT(xi) i = 1, 2, 3, ,ndor

    de=P

    where

    1

    2

    =

    d

    e

    n

    d

    d

    d

    d

    T

    1

    T

    2

    T

    ( )

    ( )

    ( )dn

    p x

    p x

    P

    p x

    ,

  • 8/13/2019 Finite Element Method for Professionals

    14/34Finite Element Method by G. R. Liu and S. S. Quek14

    Displacement interpolation

    The coefficients in can be found by

    e

    - 1 P d

    Therefore, uh(x) = N(x) de

    1 2

    1 1 1 1

    1 2

    ( ) ( ) ( )

    1 2

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    n

    T T T T

    n

    N N N

    nN N N

    - - - -

    x x x

    N x p x P p x P p x P p x P

    x x x

  • 8/13/2019 Finite Element Method for Professionals

    15/34Finite Element Method by G. R. Liu and S. S. Quek15

    Displacement interpolation

    Sufficient requirements for FEM shape

    functions

    1 , 1,2, ,

    0 , , 1,2, ,

    d

    i j ij

    d

    i j j nN

    i j i j n

    x1. (Delta function

    property)

    1

    ( ) 1n

    ii

    N

    x2. (Partition of unity property

    rigid body movement)

    1

    ( )dn

    i i

    i

    N x x x

    3. (Linear field reproduction property)

  • 8/13/2019 Finite Element Method for Professionals

    16/34Finite Element Method by G. R. Liu and S. S. Quek16

    Step 3: Formation of FE equations in local

    coordinates

    Since U= Nde

    Therefore, e= LU e= L N de= B deStrain matrix

    eTe kdd

    2

    1or where

    (Stiffness matrix)

    e

    T

    Ve

    T

    ee

    TT

    e

    Ve

    T

    Ve

    VcVcVc ddBBddBdBdd )(2

    1

    2

    1

    2

    1

    VcT

    Ve

    edBBk

    dT V m N N

  • 8/13/2019 Finite Element Method for Professionals

    17/34Finite Element Method by G. R. Liu and S. S. Quek

    17

    Step 3: Formation of FE equations in local

    coordinates

    Since U= Nde eU Nd

    or

    ee

    T

    e

    T dmd

    2

    1 where

    (Mass matrix)

    1 1 1d d ( d )

    2 2 2e e e

    T T T T T e e e e

    V V V

    T V V V U U d N Nd d N N d

    d

    e

    e

    V

    V m N N

    d

    e

    T

    e

    V

    V

    m N N

  • 8/13/2019 Finite Element Method for Professionals

    18/34Finite Element Method by G. R. Liu and S. S. Quek

    18

    Step 3: Formation of FE equations in local

    coordinates

    e

    T

    es

    T

    eb

    T

    efW FdFdFd

    sbe

    FFf (Force vector)

    d d ( d ) ( d )

    e e e e

    T T T T T T T T

    f e b e s e b e s

    V S V S

    W V S V S d N f d N f d N f d N f

    d

    e

    T

    b b

    V

    V F N f de

    Ts s

    S

    S F N f

  • 8/13/2019 Finite Element Method for Professionals

    19/34Finite Element Method by G. R. Liu and S. S. Quek

    19

    Step 3: Formation of FE equations in local

    coordinates

    0d)(

    2

    1

    -

    te

    T

    eee

    T

    eee

    T

    e

    t

    t Fddkddmd

    )(d

    d)

    d

    d( Te

    T

    eT

    ett

    dd

    d

    ttt eet

    t

    Teee

    t

    t

    Te

    t

    tee

    Teee

    t

    t

    Te ddd

    2

    1

    2

    1

    2

    1

    2

    1

    dmddmddmddmd --

    0d)(2

    1

    -- teeeeT

    e

    t

    tFkddmd

    0d)2

    1

    2

    1(

    2

    1

    - teT

    eee

    T

    eee

    T

    e

    t

    tFddkddmd

    eeeee fdmdk

    FE Equation

    (Hamiltons principle)

  • 8/13/2019 Finite Element Method for Professionals

    20/34Finite Element Method by G. R. Liu and S. S. Quek

    20

    Step 4: Coordinate transformation

    eeee fdmkd

    x

    y

    x'y'

    y'

    x'

    Local coordinate

    systems

    Global

    coordinate

    systems

    ee TDd

    eeeee FDMDK

    TkTK eT

    e TmTM eT

    e eT

    e fTF , ,

    where

    (Local)

    (Global)

  • 8/13/2019 Finite Element Method for Professionals

    21/34Finite Element Method by G. R. Liu and S. S. Quek

    21

    Step 5: Assembly of FE equations

    Direct assembly method

    Adding up contributions made by elements

    sharing the node

    FDMKD

    FKD (Static)

  • 8/13/2019 Finite Element Method for Professionals

    22/34Finite Element Method by G. R. Liu and S. S. Quek

    22

    Step 6: Impose displacement constraints

    No constraints rigid body movement(meaningless for static analysis)

    Remove rows and columns correspondingto the degrees of freedom being constrained

    K is semi-positive definite

  • 8/13/2019 Finite Element Method for Professionals

    23/34

    Finite Element Method by G. R. Liu and S. S. Quek23

    Step 7: Solve the FE equations

    Solve the FE equation,

    for the displacement at the nodes, D

    The strain and stress can be retrieved by

    using e= LUand s = c e with theinterpolation, U=Nd

    FDMKD

  • 8/13/2019 Finite Element Method for Professionals

    24/34

    Finite Element Method by G. R. Liu and S. S. Quek24

    STATIC ANALYSIS

    Solve KD=Ffor D

    Gauss elmination

    LU decomposition

    Etc.

  • 8/13/2019 Finite Element Method for Professionals

    25/34

    Finite Element Method by G. R. Liu and S. S. Quek25

    EIGENVALUE ANALYSIS

    0 DMKD (Homogeneous equation, F= 0)

    Assume )exp( tiD

    0][ 2 - MK Let

    2

    0][ - MK 0]det[ -- MKMK

    [ K - iM] i= 0 (Eigenvector)(Roots of equation are the

    eigenvalues)

  • 8/13/2019 Finite Element Method for Professionals

    26/34

    Finite Element Method by G. R. Liu and S. S. Quek26

    EIGENVALUE ANALYSIS

    Methods of solving eigenvalue equation

    Jacobis method

    Givens method and Householders method The bisection method (Sturm sequences)

    Inverse iteration

    QR method

    Subspace iteration

    Lanczos method

  • 8/13/2019 Finite Element Method for Professionals

    27/34

    Finite Element Method by G. R. Liu and S. S. Quek27

    TRANSIENT ANALYSIS

    Structure systems are very often subjected totransientexcitation.

    A transient excitation is a highly dynamic timedependent force exerted on the structure, such asearthquake, impact, and shocks.

    The discrete governing equation system usually

    requires a different solver from that of eigenvalueanalysis.

    The widely used method is the so-called directintegration method.

  • 8/13/2019 Finite Element Method for Professionals

    28/34

    Finite Element Method by G. R. Liu and S. S. Quek28

    TRANSIENT ANALYSIS

    The direct integration method is basically usingthefinite difference methodfor time stepping.

    There are mainly two types of direct integrationmethod; one is implicit and the other is explicit.

    Implicit method (e.g.Newmarksmethod) is moreefficient for relatively slow phenomena

    Explicit method (e.g. central differencing method)is more efficient for very fast phenomena, such asimpact and explosion.

  • 8/13/2019 Finite Element Method for Professionals

    29/34

    Finite Element Method by G. R. Liu and S. S. Quek29

    Newmarks method (Implicit)

    Assume that

    2 1

    2t t t t t t t t t

    -

    D D D D D

    1t t t t t t t - D D D D

    KD CD MD FSubstitute into

    2 1

    2

    1

    t t t t t

    t t t t t t t t

    t t

    t

    -

    -

    K D D D D

    C D D D MD F

  • 8/13/2019 Finite Element Method for Professionals

    30/34

    Finite Element Method by G. R. Liu and S. S. Quek30

    Newmarks method (Implicit)

    residual

    cm t t t t K D F

    where

    2

    cm t t K K C M

    2residual1

    12

    t t t t t t t t t t t t

    - - - -

    F F K D D D C D D

    Therefore,1

    cm

    residual

    t t t t

    - D K F

  • 8/13/2019 Finite Element Method for Professionals

    31/34

    Finite Element Method by G. R. Liu and S. S. Quek31

    Newmarks method (Implicit)

    Start with D0and 0D

    Obtain0

    D KD CD MD Fusing

    1

    cm

    residual

    t t t t

    - D K FObtain tD using

    Obtain Dt and tD using

    2 12t t t t t t t t t -

    D D D D D

    1t t t t t t t - D D D D

    Marchforward

    in time

  • 8/13/2019 Finite Element Method for Professionals

    32/34

    Finite Element Method by G. R. Liu and S. S. Quek32

    Central difference method (explicit)

    int residual - - MD F CD KD F F F

    residual- 1D M F (Lumped massno need to solve matrix equation)

    2t t t t t t - D D D

    2t t t t t t - D D D

    2

    12t t t t t t

    t - -

    D D D D

    2

    2t t t t t

    tt-

    - D D D D

    D0and are0D

  • 8/13/2019 Finite Element Method for Professionals

    33/34

    Finite Element Method by G. R. Liu and S. S. Quek33

    Central

    differencemethod

    (explicit)

    D,

    t

    x

    x

    x x

    x

    t0 t-t -t/2 t/2

    Find average velocity at time t=

    -t/2using

    Find using the average acceleration at

    time t= 0.

    FindDtusing the average velocity at time t=t/2

    Obtain D-tusing

    prescribed and

    can be obtained from

    Use toobtain assuming .

    Obtain using

    Time marching in half the time step

    0D

    residual- 1D M F

    2

    2t t t t t

    tt-

    - D D D D

    / 2t-D

    /2 /2t t t t t t

    -

    D D D

    / 2tD

    /2 /2t t t t t t - D D D

    /2 /2t t t t t t - D D D

    /2 /2t t t t t t - D D DtD / 2 0t D D

    tDresidual- 1D M F

  • 8/13/2019 Finite Element Method for Professionals

    34/34

    REMARKS In FEM, the displacement field Uis expressed by

    displacements at nodes using shape functions Ndefined over elements.

    The strain matrix B is the key in developing thestiffness matrix.

    To develop FE equations for different types ofstructure components, all that is needed to do is

    define the shape function and then establish thestrain matrix B.

    The rest of the procedure is very much the samefor all types of elements.