Top Banner
Mul�disciplinary design op�miza�on in computa�onal mechanics Applica�on case – 2D wing Piotr Breitkopf 26.11.2014
17

Finite Element 2D Wing

Dec 24, 2015

Download

Documents

issamoune

finite element 2D
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Finite Element 2D Wing

Mul�disciplinary  design  op�miza�on    in  computa�onal  mechanics  

 Applica�on  case  –  2D  wing  

Piotr  Breitkopf  26.11.2014  

 

Page 2: Finite Element 2D Wing

2  

Page 3: Finite Element 2D Wing

Li�  

Drag  

Angle  of  a�ack  

Reference  line  Aerodynamic  center    

Chord  Air  velocity  

3  

Page 4: Finite Element 2D Wing

Hypothesis  

4  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-2

-1.5

-1

-0.5

0

0.5

1

1.5

2Wortmain airfoil FX60.126 - computing domain

  Simplifying  assump�ons  –  incompressible,  non-­‐viscous  (non-­‐rota�onal)  flow  

–  velocity  field  determined  by  stream  func�on  

–  pressure  given  by  Bernoulli's  principle  

  far  field  pressure                          ,  flow  velocity  P1 Vwind

@u

@x+

@v

@y= 0,

@v

@x @u

@y= 0

u =@

@y, v = @

@x

P (x, y) = P1 +⇢

2(V 2

wind V 2(x, y))

Page 5: Finite Element 2D Wing

Streamlines  

5  

  Curves  that  are  instantaneously  tangent  to  the  velocity  vector  of  the  flow  

 

n

1

2

0

Page 6: Finite Element 2D Wing

Integral  (weak  formula�on)  

6  

W =

Z

(rδ ,r )d⌦−I

@⌦

δ (r , n)d(@⌦) = W⌦ −W@⌦ = 0

  differen�al  formula�on  

  residual  weighted  by  test  func�on  

     a�er  integra�ng  by  parts  and  using  Green’s  theorem  

δ

W =

Z

∆ (x, y)δ d⌦ = 0

∆ (x, y) = 0, (x, y) 2 ⌦

Page 7: Finite Element 2D Wing

Finite  element  discre�za�on  

7  

  Integral  terms  

  are  computed  over  surface  and  boundary  mesh  

W⌦ =

Z

(rδ ,r )d⌦ =

neX

e=1

Z

⌦e

(rδ ,r )d⌦e

W@⌦ =

I

@⌦

δ (r , n)d(@⌦) =neX

e=1

I

@⌦e

δ (r , n)d(@⌦e)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Page 8: Finite Element 2D Wing

Finite  element  approxima�on  

8  

A1

A2A3

(x, y)

(x1, y1)

(x2, y2)(x3, y3)

(x1, y1)

(x2, y2)

(x, y)

l1l2

(x, y) =3X

i=1

Ni(x, y) (xi, yi)

Ni(l) = li/L Ni(x, y) = Ai/A, i = 1...3

(x, y) =2X

i=1

Ni(l) (xi, yi)

r (x, y) =2X

i=1

rNi(l) (xi, yi) r (x, y) =3X

i=1

rNi(x, y) (xi, yi)

Page 9: Finite Element 2D Wing

Explicit  form  of  shape  func�ons  and  deriva�ves  for  a  triangle  

9  

A =1

2((x2 x1)(y3 y1) (x3 x1)(y2 y1))

@N3

@x=

1

2A(y1 y2)

@N3

@y=

1

2A(x2 x1)

N1 =1

2A((x2 x)(y3 y) (x3 x)(y2 y))

N2 =1

2A((x x1)(y3 y1) (x3 x1)(y y1))

@N1

@y=

1

2A(x3 x2)

@N2

@x=

1

2A(y3 y1)

@N2

@y=

1

2A(x1 x3)

N3 =1

2A((x2 x1)(y y1) (x x1)(y2 y1))

@N1

@x=

1

2A(y3 y2)

Page 10: Finite Element 2D Wing

Surface  term  

10  

Be =1

2A

y2 y3 y3 y1 y1 y2x3 x2 x1 x3 x2 x1

W⌦e= δ T

e Ke e,Ke = ABTB

r (x, y) =3X

i=1

rNi(x, y) i =L

6

y2 − y3 y3 − y1 y1 − y2x3 − x2 x1 − x3 x2 − x1

�2

4 1

2

3

3

5 = Be e

δ e =⇥N1(x, y) N2(x, y) N3(x, y)

⇤2

4δ 1

δ 2

δ 3

3

5

Page 11: Finite Element 2D Wing

Boundary  term  

11  

Me =L

6

2 11 2

W@⌦e= δ T

e Me(nyun nxv), un =

✓u1

u2

◆, vn =

✓v1v2

(r , n) =⇥N1(s) N2(s)

⇤(nyun − nxvn)

δ e =⇥N1(s) N2(s)

⇤ δ 1

δ 2

Page 12: Finite Element 2D Wing

Finite  element  linear  system  

12  

W =

eX

e=1

We = T (K − F ) = 0

) K = F

  boundary  condi�ons  –  Neumann  at  the  external  boundary  –  intergrated  in  the  RHS  –  Dirichlet    

1 = K111 (F K12 2)

K11 K12

KT12 K22

� 1

2

�=

F1

0

Page 13: Finite Element 2D Wing

non-­‐rota�onal  flow  

13  -2 -1 0 1 2 3

= 0

(@

@y,@

@x) = (u, v)

(@

@y,@

@x) = (u, v)

Page 14: Finite Element 2D Wing

Circular  flow  

14  

= 0

= 1 = 1

= 1

= 1

Page 15: Finite Element 2D Wing

Ku�a  (Joukowski)  condi�on  

15  

0.8 0.9 1 1.1 1.2-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25 p g

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25 y

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.2-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25 y

V = V1 + ↵V2V1 V2

  Ku�a  condi�on:  no  circula�on  around  the  trailing  edge      resultant  velocity  follows  reference  line  

   weighted  sum  of  uniform  and  circular  flows    Li�  and  li�  coefficient  

L = ⇢V , =

I

@⌦

(rφ, n), cL =L

12⇢V

2l

Page 16: Finite Element 2D Wing

Summed  flows  

16  -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 p g

Page 17: Finite Element 2D Wing

Finite  element  2D  wing  example  summary  

17  

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

pressure #104

8.5

9

9.5

10

10.5

  generate  domain  mesh  –  surface  elements    –  linear  elements  on  the  boundary  

  solve  two  problems  –  uniform  flow  –  circular  flow  

  assemble  flows  –  compute  Ku�a  coefficient  –  sum  up  stream  func�ons  

  post-­‐process  quan��es  of  interest  –  veloci�es  –  pressure  –  li�,  drag,  pitching  moment  –  li�/drag  coefficients  –  ...  

  detailed  course  materials  at  :  –  h�p://www.utc.fr/~mecagom4/MECAWEB/EXEMPLE/EX07/SAAA1.htm