Top Banner
Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar, April Fools’ Day, 2011. * Supported by NWO-VIDI Grant 639.072.072
29

Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Dec 14, 2018

Download

Documents

trantuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Finite Buffer Queueing/Fluid Networkswith Overflows

Erjen Lefeber, Yoni Nazarathy.

Swinburne Applied Mathematics Seminar,

April Fools’ Day, 2011.

* Supported by NWO-VIDI Grant 639.072.072

Page 2: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Background Jackson Networks and LCP

Page 3: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Open Jackson NetworksJackson 1957, Goodman & Massey 1984, Chen & Mandelbaum 1991

1

1

'( ')

M

i i j j ij

p

PI P

λ α λ

λ α λ

λ α

=

= +

= +

= −

, ,M M M MPµ α ×

( )( )

( )

1

'

( ') , ( ')

M

i i j j j ij

p

P

LCP I P I P

λ α λ µ

λ α λ µ

α µ

=

= + ∧

= + ∧

− − −

iµiα

Traffic Equations (Stable Case):

Traffic Equations (General Case):

i jp

11

M

i jij

p p=

= −∑

Problem Data:

Assume: open, no “dead” nodes

Page 4: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

The Linear Complementarity Problem (LCP)

The last (complemenatrity) condition reads:0 0 and 0 0.i i i iw z z w> ⇒ = > ⇒ =

Page 5: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Min-Linear Equations (Using LCP)( )Bλ γ λ µ= + ∧

00( ) '( ) 0

Bλ γ δδ λδ µ

λ δ µ δ

= +≤ ≤≤ ≤− − =

,w zλ δ µ δ= − = −

( ( ) , )LCP I B I Bγ µ− − −

δ λ µ= ∧Find :λ

Page 6: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Classic Product Form Results Jackson 1957, Goodman & Massey 1984

( )( )

( )

1

'

( ') , ( ')

M

i i j j j ij

p

P

LCP I P I P

λ α λ µ

λ α λ µ

α µ

=

= + ∧

= + ∧

− − −

Assume arrivals are Poisson processes and i.i.d. exponential service durations

Again the Traffic Equations :

Page 7: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Our Contribution:Finite Buffers with Overflows

Page 8: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Modification: Finite Buffers and Overflows Practically important but not as tractable

iµiαExact Traffic Equations:i jp

11

M

i jij

p p=

= −∑

Problem Data:

, , , ,M M M M M M MP K Qµ α × ×

Explicit Solutions:

Generally NoiK

MK1

1M

i jij

q q=

= −∑

i jq

1µ1K

Generally No

Assume: open, no “dead” nodes, no “jam” (open overflows)

Nico van Dijk, 1988. Yes if P=Q.

Page 9: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

So scale the system with :

When K is Big, Things are “Simpler”

out rate λ µ≈ ∧overflow rate ( )λ λ µ λ µ +≈ − ∧ = −

N

N

N

NN K

α α

µ µ

= Ν

=

Κ =

1,2,...N =

For K big:

Page 10: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Limiting Traffic Equations

( ) ( )1 1

M M

i i j j ji j j jij j

p qλ α λ µ λ µ+

= =

= + ∧ + −∑ ∑

limiting out rate λ µ= ∧

limiting overflow rate ( )λ µ += −

( )' '( )P Qλ α λ µ λ µ += + ∧ + −

or

( )1 1( ') ( ( ') ) , ( ') ( ')LCP I Q I P I Q I Pα µ− −− − − − −

or

Page 11: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Digression:The Linear Complementarity Problem (LCP)

Page 12: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

The Linear Complementarity Problem (LCP)

The last (complemenatrity) condition reads:0 0 and 0 0.i i i iw z z w> ⇒ = > ⇒ =

Page 13: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

It’s all about Choosing a Subset…For {1,..., } denote by ( ) a matrix withcollumns taken from (identity matrix)and collumns {1,..., } \ taken from .

n BI

n M

α αα

α

is about finding and 0such that

( )In this case:

LCP x

B x q

α

α

=

0, .

0i

i ii

ix iw z

x iiαααα

∈∈ = = ∉∉

Page 14: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Illustration: n=2

1 0 11 20 1 2

1 12 11 20 22 2

011 11 2121 2

11 12 11 2

21 22 2

{1,2}:

{1}:

{2}:

:

qw w

q

m qw z

m q

m qz w

m q

m m qz z

m m q

α

α

α

α

+ =

− + = −

− + = −

− − + = − −

=

=

=

=∅

1 11 12 1 1

2 21 22 2 2

1 00 1

w m m z qw m m z q

− =

{1,2}C

Complementary cones:

10

01

12

22

mm

− −

11

21

mm

− −

1

2

qq

{1}C

{2}C

{ : ( ) , 0}C y y B u uα α= = ≥

C∅

Immediate naïve algorithm with complexity 3 32 2n nn or n+

Page 15: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Existence and UniquenessDefinition: A matrix, is a P-matrix if thedeterminants of all (2 1) principal submatrices are positive.

n n

n

M ×∈

Theorem (1958): ( , ) has a unique solutionfor all if and only if is a P-matrix.n

LCP q Mq M∈

11 22 11 22 12 21e.g.for 2 : 0, 0, 0n m m m m m m= > > − >

P-matrix means that the complementary cones "parition" n

P-Matrixes

Symmetric MatrixesPD Matrixes

Relation of P-matrixes to positive definite (PD) matrixes:

Reminder(PD) :' 0 0x Mx x> ∀ ≠

Reminder(PSD) :' 0x Mx x≥ ∀

Page 16: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Computation (Algorithms)• Naive algorithm, runs on all subsets alpha (intractable)• Generally, LCP is NP complete• Lemeke’s Algorithm, a bit like simplex• If M is PSD: polynomial time algorithms exists• PD LCP equivalent to QP• Special cases of M, linear number of iterations• Note: Checking for P-Matrix is NP complete, checking for PD is

polynomial time• For our special case we have an algorithm with a quadratic

number of iterations(Still have not done: proven uniqueness using LCP theory).

Page 17: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

How does LCP generalize LP and QP?

Page 18: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Linear Programming (LP)

min '. .

0

c xs t Ax b

x≥≥

max '. . '

0

b ys t A y c

y≤≥

Primal-LP: Dual-LP:

Theorem: Complementary slackness conditions

min '. .

, 0

c xs t Ax b v

x v− =≥

max '. . '

, 0

b ys t u c A y

y u= −

Assume , , , are feasible for primaland dual:0, 0 Theyareoptimalsolutionsi i i i

x v y ux u y v= = ⇔

Page 19: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

0 ',

0c A

LCPb A

− −

0 '0

u A x cv A y b

− − = −

, , , 0u v x y ≥

' 0u x = ' 0v y =

The LCP of LPFind:

Such that:

And (complementary slackness):

Page 20: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Quadratic Programming1min ( ) ' '2

. .0

Q x c x x D x

s t Ax bx

= +

≥≥

Lemma: An optimizer, , of the QP also optimizes min ( ) '. .

0

c Dx xs t Ax b

x

+≥≥

Proof:( )x x x xη η= + −

( ) ( ) 0Q x Q xη − ≥ ( ' ) '( ) ( ) ' ( )

2c Dx x x x x D x xη−+ − ≥ − −

x

QP-LP:

QP-LP gives a necessary condition for optimality of QP in terms of an checking optimality of an LP

QP:

0 1,η< <Let be feasible.x

( ' ) '( ) 0c Dx x x+ − ≥

( ' ) ' ( ' ) 'c Dx x c Dx x+ ≥ +

Page 21: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

The Resulting LCP of QP

',

0c D A

LCPb A

− −

Allows to find “suspect” points that satisfy the necessary conditions: QP-LP

Theorem: Solutions of this LCP are KKT (Karush-Kuhn-Tucker) points for the QP

Corollary: If D is PSD then x solving the LCP optimizes QP.

Proof: Write down KKT conditions and check.

Note: When D is PSD then M is PSD. In this case it can be shown that the LCP is equivalent to a QP (solved in polynomial time). Similarly, every PSD LCP can be formulated as a PSD QP.

Page 22: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Back To Our Problem:The Fluid Network

Page 23: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Limiting TrajectoriesIn similar spirit to the traffic equations, limiting trajectories, , may be calculated…

( )lim sup ( ) 0N

tN

X t x tN→∞

− =

( )x t

a.s.

We think:

Page 24: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Sojourn Times

Sojourn Time Time in system of customer arriving to steady state FCFS system

Sojourn time of customer in 'th scaled systemNS N≡

We want to find the limiting distribution of NS

Page 25: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Construction of Limiting Sojourn Times

time through i F i

i

∈ ≈

{1,..., }

{ 1,..., }

F s

F s M

=

= +

i i

i i

for i S

for i S

λ µ

λ µ

> ∈

< ∈Observe,

time through i F 0∈ ≈For job at entrance of buffer :

. . enters buffer i

. . 1 routed to entrace of buffer j

. . 1 leaves the system

i

i

iij

i

ii

i

w p

w p q

w p q

µλ

µλ

µλ

≈ −

≈ −

i F∈

A “fast” chain and “slow” chain…

A job at entrance of buffer : routed almost immediately according toi F∈ P

Page 26: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Sojourn Times Scale to a Discrete Distribution!!!

We think: ( )1,Ns s sS DPH T τ× ×⇒1,i

i

K i Fµ = ∈

Page 27: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

The “Fast” Chain and “Slow” Chain

1’

2’

3’

4’

1

2

0

4

41 2 1, 1,11 2

{1, 2}, {3, 4}

Example: ,

:

M

K Kii

F F

αµ µ

=

∑= = ==

= =

11

1

1 iqµλ

4p

4

1 011

j jj

p p a=

+∑

4

1 11

j jj

p a=∑

Absorbtion probability

in {0,1,2} starting in i'i ja

j

“Fast” chain on {0, 1, 2, 1’, 2’, 3’, 4’}:

“Slow” chain on {0, 1, 2}

start

4

1 21

j jj

p a=∑

1

1

µλ

11

1

1 qµλ

4 ip

4

1j ji

jaα

=∑

4

01

j jj

aα=∑

DPH distribution (hitting time of 0)transitions based on “Fast” chain

Page 28: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

The DPH Parameters (Details)

1~ ( , )s s sS DPH T τ× ×

{1,..., }, { 1,..., }F s F s M= = +

1P( ) 1 1ksS k Tτ ×≤ = − ⋅ ⋅

1

1

1

00 0

1

0

s M sM M M M s M s

s M s

s

M s s

C Q PI

µλ

µλ

× −× × − ×

− ×

= ⋅ + ⋅ −

1

10

0

0

M ss

s

M s s

B

µλ

µλ

×

− ×

=

1( )M sA I C B−× = − ⋅

0s s s s M sT I P A× × − = ⋅ ⋅ 1

1

1 Ts M

jj

Aτ αα

×

=

= ⋅

“Fast” chain

“Slow” chain

Page 29: Finite Buffer Queueing/Fluid Networks with Overflows · Finite Buffer Queueing/Fluid Networks with Overflows Erjen Lefeber, Yoni Nazarathy. Swinburne Applied Mathematics Seminar,

Mechanism of nonlinear flow pattern selection in moderately non-Boussinesq mixed convection

Yoni Nazarathy, Sergey Suslov,

John Beynon, William Phillips

Swinburne Applied Mathematics Seminar,

April 1, 2011.