Top Banner
FINANCIAL ECONOMETRICS SPRING 2013 WEEK VII MULTIVARIATE MODELLING OF VOLATILITY Prof. Dr. Burç ÜLENGİN
76

FINANCIAL ECONOMETRICS

Jan 23, 2016

Download

Documents

shandi

FINANCIAL ECONOMETRICS. SPRING 2013 WEEK VII MULTIVARIATE MODELLING OF VOLATILITY Prof. Dr. Burç ÜLENGİN. MULTIVARIATE VOLATILITY. There may be interactions among the conditional variance of the return series. Also covariance of the return series may change over the time. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: FINANCIAL ECONOMETRICS

FINANCIAL ECONOMETRICS

SPRING 2013 WEEK VIIMULTIVARIATE MODELLING OF VOLATILITY

Prof. Dr. Burç ÜLENGİN

Page 2: FINANCIAL ECONOMETRICS

MULTIVARIATE VOLATILITYThere may be interactions among the

conditional variance of the return series.Also covariance of the return series may

change over the time.Therefore the full perspective of volatility

modelling requires the treatment of variances and covariances together- simultaneously.

When the variances and covariances are modelled it means that correlations are modelled too.

Page 3: FINANCIAL ECONOMETRICS

MOVING CORRELATION OF THE RETURNS OF TWO FINANCIAL ASSETS

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 42 83 124

165

206

247

288

329

370

411

452

493

534

575

616

657

698

739

780

821

862

903

944

985

CO

RR

ELA

TIO

N

cor50 cor100

Page 4: FINANCIAL ECONOMETRICS

MULTIVARIATE GARCH In multivariate GARCH models, yt is a vector

of the conditional means (Nx1), the conditional variance of yt is an matrix H (NxN).

The diagonal elements of H are the variance terms hii, and the off-diagonal elements are the covariance terms hij.

NNNN

N

N

hhh

hhh

hhh

H

...

....................

......

.......

21

22221

11211

Page 5: FINANCIAL ECONOMETRICS

MULTIVARIATE GARCHThere are numerous different

representations of the multivariate GARCH model.

The main representations are: VECH Diagonal BEKK- Baba, Engle, Kraft, Kroner Constant correlation representation Principle component representation

Page 6: FINANCIAL ECONOMETRICS

VECH REPRESANTATION Full treatment of the matrix H In the VECH model, the number of parameters can

be exteremely large. Estimating a large number of parameters is not in

theory a problem as long as there is large enough sample size.

The parameters of VECH are estimated by maximum likelihood and the obtaining convergence of the typical optimization algorithm employed in practice be very difficult when a large number of parameters are involved.

Also estimated variances must be positive and it requires the additional restrictions on parameters

Page 7: FINANCIAL ECONOMETRICS

VECH REPRESANTATION 2 Variable Case

1

1

1

1

11

1

22

12

11

333231

232221

131211

22

22

21

21

333231

232221

131211

022

012

011

22

12

11

b

b

b

a

a

a

t

t

t

t

tt

t

t

t

t

h

h

h

bb

bb

bb

aa

aa

aa

a

a

a

h

h

h

1111111

1111111

1111111

22331232113122332132

2131

02222

22231222112122232122

2121

01212

22131212111122132112

2111

01111

b a

b a

b a

tttttttt

tttttttt

tttttttt

hbhbhaaah

hbhbhaaah

hbhbhaaah

A and B are {Nx(N+1)/2 , Nx(N+1)/2} matrices .

In the case of 2 variables, 3 equations and 21 parameters.

5 variables, 20 equations and 820 parameters.

10 variables, 55 equations and 4025 parameters.

Page 8: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION The diagonal representation is based on the

assumption that the individual conditional variances and conditional covariances are functions of only lagged values of themselves and lagged squared residuals.

Bollerslev, Engle and Woodridge (1988) proposed In the case of 2 variables, this representation reduces

the number of parameters to be estimated from 21 to 9.

At the expense of losing information on certain interrelationships, such as the relationship between the individual conditional variances and the conditional covariances.

Also estimated variances must be positive and it requires the additional restrictions on parameters

Page 9: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION 2 Variable Case

1

1

1

1

11

1

22

12

11

33

22

11

22

22

21

21

33

22

11

022

012

011

22

12

11

0 0

0 0

0 0 b

0 0

0 0

0 0 a

t

t

t

t

tt

t

t

t

t

h

h

h

b

b

a

a

a

a

a

h

h

h

11

111

11

22332233

02222

1222212201212

11112111

01111

ba

ttt

tttt

ttt

hbaah

hbaah

hah

)1('11 BHAH tt

Page 10: FINANCIAL ECONOMETRICS

-50

-40

-30

-20

-10

0

10

20

30

40

97 98 99 00 01 02 03 04 05 06 07

RGAZ

-50

-40

-30

-20

-10

0

10

20

30

40

97 98 99 00 01 02 03 04 05 06 07

ROIL

DIAGONAL REPRESENTATIONOIL & NATURAL GAS PRICES

11

111

11

22332233

02222

1222212201212

11112111

01111

22

11

ba

ttt

tttt

ttt

t

t

hbaah

hbaah

hah

r

r

toil

tgas

Page 11: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION ESTIMATIONOIL & NATURAL GAS PRICES

Estimation Method: ARCH Maximum Likelihood (Marquardt)Covariance specification: Diagonal VECHSample: 1997M02 2007M01Included observations: 120Total system (balanced) observations 240Disturbance assumption: Student's t distributionConvergence achieved after 198 iterations

Coefficient Std. Error z-Statistic Prob. C(1) 1.259 1.082 1.164 0.245C(2) 2.438 0.733 3.328 0.001

Variance Equation CoefficientsC(3) 63.635 41.552 1.531 0.126C(4) 0.837 1.852 0.452 0.651C(5) 9.479 2.224 4.261 0.000C(6) 0.224 0.179 1.256 0.209C(7) -0.056 0.039 -1.421 0.155C(8) -0.200 0.081 -2.467 0.014C(9) 0.352 0.358 0.986 0.324C(10) 0.858 0.065 13.109 0.000C(11) 1.067 0.043 24.956 0.000

t-Distribution (Degree of Freedom) C(12) 18.732 26.610 0.704 0.482

Log likelihood -890.0937 Schwarz criterion 15.31364Avg. log likelihood -3.708724 Hannan-Quinn criter. 15.1481Akaike info criterion 15.03489

11

111

11

22332233

02222

1222212201212

11112111

01111

22

11

ba

ttt

tttt

ttt

t

t

hbaah

hbaah

hah

r

r

toil

tgas

Page 12: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION ESTIMATIONOIL & NATURAL GAS PRICES

CoefficientC(1) 1.259C(2) 2.438

Variance Equation CoefficientsC(3) 63.635C(4) 0.837C(5) 9.479C(6) 0.224C(7) -0.056C(8) -0.200C(9) 0.352C(10) 0.858C(11) 1.067

Estimated Equations:=====================RGAZ = C(1)

ROIL = C(2)

Substituted Coefficients:=====================RGAZ = 1.258

ROIL = 2.438

Variance-Covariance Representation:=====================GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)

Variance and Covariance Equations:=====================GARCH1 = M(1,1) + A1(1,1)*RESID1(-1)^2 + B1(1,1)*GARCH1(-1)

GARCH2 = M(2,2) + A1(2,2)*RESID2(-1)^2 + B1(2,2)*GARCH2(-1)

COV1_2 = M(1,2) + A1(1,2)*RESID1(-1)*RESID2(-1) + B1(1,2)*COV1_2(-1)

Substituted Coefficients:=====================GARCH1 = 63.634 + 0.224*RESID1(-1)^2 + 0.352*GARCH1(-1)

GARCH2 = 9.479 -0.199*RESID2(-1)^2 + 1.066*GARCH2(-1)

COV1_2 = 0.837 -0.055*RESID1(-1)*RESID2(-1) + 0.857*COV1_2(-1)

11

111

11

22332233

02222

1222212201212

11112111

01111

22

11

ba

ttt

tttt

ttt

t

t

hbaah

hbaah

hah

r

r

toil

tgas

Coefficient

M(1,1) 63.63M(1,2) 0.84M(2,2) 9.48A1(1,1) 0.22A1(1,2) -0.06A1(2,2) -0.20B1(1,1) 0.35B1(1,2) 0.86B1(2,2) 1.07

Covariance specification: Diagonal VECHGARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)M is an indefinite matrixA1 is an indefinite matrixB1 is an indefinite matrix

Page 13: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION VOLATILITY FORECAST OF OIL & NATURAL GAS PRICES

0

200

400

600

800

97 98 99 00 01 02 03 04 05 06

Var(RGAZ)

-100

0

100

200

300

97 98 99 00 01 02 03 04 05 06

Cov(RGAZ,ROIL)

0

40

80

120

160

200

240

97 98 99 00 01 02 03 04 05 06

Var(ROIL)

Conditional Covariance

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

97 98 99 00 01 02 03 04 05 06

Cor(RGAZ,ROIL)

Conditional Correlation

Page 14: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION REVISED MODEL ESTIMATION OIL & NATURAL GAS PRICES

11

111

11

1

22332233

02222

1222212201212

11112111

01111

22

11

ba

ttt

tttt

ttt

t

tt

hbaah

hbaah

hah

r

rr

toil

toilgas

Page 15: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION REVISED MODEL ESTIMATION OIL & NATURAL GAS PRICES

Estimation Method: ARCH Maximum Likelihood (Marquardt)Covariance specification: Diagonal VECHSample: 1997M03 2007M01Included observations: 119Total system (balanced) observations 238Disturbance assumption: Student's t distributionConvergence achieved after 26 iterations

Coefficient Std. Error z-Statistic Prob. C(1) 0.548 0.873 0.628 0.530C(2) 0.240 0.088 2.730 0.006C(3) 1.513 0.782 1.934 0.053

C(4) 1.974 1.865 1.059 0.290C(5) 0.474 0.107 4.407 0.000C(6) -0.110 0.123 -0.894 0.371C(7) 0.890 0.041 21.543 0.000C(8) 0.983 0.020 48.854 0.000

t-Distribution (Degree of Freedom)

C(9) 6.928 2.791 2.482 0.013

Log likelihood -892.0641 Schwarz criterion 15.35412Avg. log likelihood -3.748168 Hannan-Quinn criter. 15.22928Akaike info criterion 15.14393

Covariance specification: Diagonal VECHGARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)M is a scalarA1 is a rank one matrixB1 is a rank one matrix

Tranformed Variance Coefficients

Coefficient

M 1.974A1(1,1) 0.224A1(1,2) -0.052A1(2,2) 0.012B1(1,1) 0.793B1(1,2) 0.875B1(2,2) 0.966

Page 16: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION REVISED MODEL ESTIMATION OIL & NATURAL GAS PRICES

Covariance specification: Diagonal VECHGARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)M is a scalarA1 is a rank one matrixB1 is a rank one matrix

Tranformed Variance Coefficients

Coefficient

M 1.974A1(1,1) 0.224A1(1,2) -0.052A1(2,2) 0.012B1(1,1) 0.793B1(1,2) 0.875B1(2,2) 0.966

CoefficientC(1) 0.548C(2) 0.240C(3) 1.513

C(4) 1.974C(5) 0.474C(6) -0.110C(7) 0.890C(8) 0.983

Estimated Equations:=====================RGAZ = C(1)+C(2)*ROIL(-1)

ROIL = C(3)

Substituted Coefficients:=====================RGAZ = 0.548145947197+0.240483266384*ROIL(-1)

ROIL = 1.51272216999

Variance-Covariance Representation:=====================GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)

Variance and Covariance Equations:=====================GARCH1 = M + A1(1,1)*RESID1(-1)^2 + B1(1,1)*GARCH1(-1)

GARCH2 = M + A1(2,2)*RESID2(-1)^2 + B1(2,2)*GARCH2(-1)

COV1_2 = M + A1(1,2)*RESID1(-1)*RESID2(-1) + B1(1,2)*COV1_2(-1)

Substituted Coefficients:=====================GARCH1 = 1.974 + 0.224*RESID1(-1)^2 + 0.792*GARCH1(-1)

GARCH2 = 1.974 + 0.012*RESID2(-1)^2 + 0.965*GARCH2(-1)

COV1_2 = 1.974 -0.052*RESID1(-1)*RESID2(-1) + 0.875*COV1_2(-1)

Page 17: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION VOLATILITY FORECAST OF OIL & NATURAL GAS PRICES

0

200

400

600

800

97 98 99 00 01 02 03 04 05 06

Var(RGAZ)

-40

0

40

80

120

97 98 99 00 01 02 03 04 05 06

Cov(RGAZ,ROIL)

75

80

85

90

95

97 98 99 00 01 02 03 04 05 06

Var(ROIL)

Conditional Covariance

-.2

-.1

.0

.1

.2

.3

.4

.5

.6

97 98 99 00 01 02 03 04 05 06

Cor(RGAZ,ROIL)

Conditional Correlation

Page 18: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION TARCH MODEL ESTIMATION OIL & NATURAL GAS PRICES

111

11111

111

1

223322233

2233

02222

1222222

211212122

01212

111121111

2111

01111

22

11

))((

ba

tttt

tttttt

tttt

t

tt

hbIdaah

hbIIdaah

hIdah

r

rr

toil

toilgas

)1())0()(0( 1111'

11 BHDIIDAAH tttttt

I1=1 if t-1<0

=0 otherwise

I2=1 if t-1<0

=0 otherwise

Page 19: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION TARCH MODEL ESTIMATION OIL & NATURAL GAS PRICESEstimation Method: ARCH Maximum Likelihood (Marquardt)Covariance specification: Diagonal VECH TARCHDate: 08/05/08 Time: 18:36Sample: 1997M03 2007M01Included observations: 119Total system (balanced) observations 238Disturbance assumption: Student's t distributionPresample covariance: backcast (parameter =0.5)Convergence achieved after 169 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 0.440 1.165 0.378 0.706C(2) 0.213 0.116 1.825 0.068C(3) 1.543 0.775 1.990 0.047

Variance Equation Coefficients

C(4) 1.465 1.116 1.313 0.189C(5) -0.013 0.028 -0.461 0.645C(6) 0.224 0.089 2.506 0.012C(7) -0.234 0.056 -4.155 0.000C(8) 0.971 0.016 61.584 0.000

t-Distribution (Degree of Freedom)

C(9) 4.810 1.774 2.711 0.007

Log likelihood -898.265 Schwarz criterion 15.45834Avg. log likelihood-3.77422 Hannan-Quinn criter. 15.3335Akaike info criterion15.24815

Covariance specification: Diagonal VECHGARCH = M + A1.*RESID(-1)*RESID(-1)' + D1.*(RESID(-1)*(RESID( -1)<0))*(RESID(-1)*(RESID(-1)<0))'D1.*(RESID(-1)*(RESID(-1)<0)) *(RESID(-1)*(RESID(-1)<0))' + B1.*GARCH(-1)M is a scalarA1 is a scalarD1 is a rank one matrixB1 is a scalar

Tranformed Variance Coefficients

Coefficient

M 1.465A1 -0.013D1(1,1) 0.050D1(1,2) -0.052D1(2,2) 0.055B1 0.971

Page 20: FINANCIAL ECONOMETRICS

DIAGONAL REPRESENTATION TARCH MODEL ESTIMATION OIL & NATURAL GAS PRICES

Estimated Equations:=====================RGAZ = C(1)+C(2)*ROIL(-1)

ROIL = C(3)

Substituted Coefficients:=====================RGAZ = 0.44021432107+0.212553531477*ROIL(-1)

ROIL = 1.54264508993

Variance-Covariance Representation:=====================GARCH = M + A1.*RESID(-1)*RESID(-1)' + D1.*(RESID(-1)*(RESID(-1)<0))*(RESID(-1)*(RESID(-1)<0))'D1.*(RESID(-1)*(RESID(-1)<0))*(RESID(-1)*(RESID(-1)<0))' + B1.*GARCH(-1)

Variance and Covariance Equations:=====================GARCH1 = M + A1*RESID1(-1) 2̂ + D1(1,1)*RESID1(-1) 2̂*(RESID1(-1)<0) + B1*GARCH1(-1)

GARCH2 = M + A1*RESID2(-1) 2̂ + D1(2,2)*RESID2(-1) 2̂*(RESID2(-1)<0) + B1*GARCH2(-1)

COV1_2 = M + A1*RESID1(-1)*RESID2(-1) + D1(1,2)*RESID1(-1)*(RESID1(-1)<0)*RESID2(-1)*(RESID2(-1)<0) + B1*COV1_2(-1)

Substituted Coefficients:=====================GARCH1 = 1.464 - 0.013*RESID1(-1)^2 + 0.050*RESID1(-1)^2*(RESID1(-1)<0) + 0.971*GARCH1(-1)

GARCH2 = 1.465 - 0.013*RESID2(-1)^2 + 0.054*RESID2(-1)^2*(RESID2(-1)<0) + 0.971*GARCH2(-1)

COV1_2 = 1.464 - 0.013*RESID1(-1)*RESID2(-1) -0.052*RESID1(-1)*(RESID1(-1)<0)*RESID2(-1)*(RESID2(-1)<0) + 0.971*COV1_2(-1)

Tranformed Variance Coefficients

Coefficient

M 1.465A1 -0.013D1(1,1) 0.050D1(1,2) -0.052D1(2,2) 0.055B1 0.971

Coefficient

C(1) 0.440C(2) 0.213C(3) 1.543

Variance Equation Coefficients

C(4) 1.465C(5) -0.013C(6) 0.224C(7) -0.234C(8) 0.971

Page 21: FINANCIAL ECONOMETRICS

100

200

300

400

500

600

97 98 99 00 01 02 03 04 05 06

Var(RGAZ)

-40

0

40

80

120

160

97 98 99 00 01 02 03 04 05 06

Cov(RGAZ,ROIL)

60

80

100

120

140

97 98 99 00 01 02 03 04 05 06

Var(ROIL)

Conditional Covariance

DIAGONAL REPRESENTATION TARCH MODEL FORECAST OIL & NATURAL GAS PRICES VOLATILITY

-.2

.0

.2

.4

.6

.8

97 98 99 00 01 02 03 04 05 06

Cor(RGAZ,ROIL)

Conditional Correlation

Page 22: FINANCIAL ECONOMETRICS

BEKK REPRESENTATION Engle and Kroner(1995) developed the

Baba(1990) approach. BEKK representation of multivariate GARCH

improves on both the VECH and diagonal representation, since H is almost guaranteed to be positive definite.

BEKK representation require more parameters than Diagonal rep. but less parameters than VECH.

It is more general than diagonal rep. as it allows for interaction effects that diagonal rep. does not.

2221

1211

2212

1211

2221

1211

2221

1211

22

22

21

22

21

21

2221

1211

022

012

012

011

2212

1211

b

b

b

b

a

a

a

a

11

11

111

111

b

b

hh

hh

b

b

a

a

a

a

aa

aa

hh

hh

tt

tt

ttt

ttt

tt

tt

BBHAAH tt )1('11

Page 23: FINANCIAL ECONOMETRICS

BEKK REPRESENTATION OF OIL & NATURAL GAS PRICES

11

111

11

22222

22

22222

12221121221112

11211

21

21111

22

11

ba

ttt

tttt

ttt

t

t

hbah

hbbaah

hh

r

r

toil

tgas

Page 24: FINANCIAL ECONOMETRICS

BEKK ESTIMATION OF OIL & NATURAL GAS PRICES

Estimation Method: ARCH Maximum Likelihood (Marquardt)Covariance specification: BEKKSample: 1997M02 2007M01Included observations: 120Total system (balanced) observations 240Disturbance assumption: Student's t distributionPresample covariance: backcast (parameter =0.5)Convergence achieved after 25 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 0.890 0.874 1.019 0.308C(2) 1.346 0.786 1.712 0.087

Variance Equation Coefficients

C(3) 1.342 1.367 0.982 0.326C(4) 0.427 0.093 4.605 0.000C(5) -0.079 0.127 -0.623 0.533C(6) 0.908 0.032 28.189 0.000C(7) 0.987 0.014 71.875 0.000

t-Distribution (Degree of Freedom)

C(8) 6.729 2.788 2.414 0.016

Log likelihood -902.4941 Schwarz criterion 15.36073Avg. log likelihood-3.760392 Hannan-Quinn criter. 15.25037Akaike info criterion15.1749

Covariance specification: BEKKGARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + B1*GARCH(-1)*B1M is a scalarA1 is diagonal matrixB1 is diagonal matrix

Tranformed Variance Coefficients

Coefficient

M 1.342A1(1,1) 0.427A1(2,2) -0.079B1(1,1) 0.908B1(2,2) 0.987

Page 25: FINANCIAL ECONOMETRICS

BEKK ESTIMATION OF OIL & NATURAL GAS PRICES

Coefficient

C(1) 0.890C(2) 1.346

Variance Equation Coefficients

C(3) 1.342C(4) 0.427C(5) -0.079C(6) 0.908C(7) 0.987

Tranformed Variance Coefficients

Coefficient

M 1.342A1(1,1) 0.427A1(2,2) -0.079B1(1,1) 0.908B1(2,2) 0.987

Estimated Equations:=====================RGAZ = C(1)

ROIL = C(2)

Substituted Coefficients:=====================RGAZ = 0.890273745039

ROIL = 1.34556553188

Variance-Covariance Representation:=====================GARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + B1*GARCH(-1)*B1

Variance and Covariance Equations:=====================GARCH1 = M + A1(1,1) 2̂*RESID1(-1) 2̂ + B1(1,1) 2̂*GARCH1(-1)

GARCH2 = M + A1(2,2) 2̂*RESID2(-1) 2̂ + B1(2,2) 2̂*GARCH2(-1)

COV1_2 = M + A1(1,1)*A1(2,2)*RESID1(-1)*RESID2(-1) + B1(1,1)*B1(2,2)*COV1_2(-1)

Substituted Coefficients:=====================GARCH1 = 1.342+0.182*RESID1(-1) 2̂+0.824*GARCH1(-1)

GARCH2 = 1.342+0.0063*RESID2(-1) 2̂+0.974*GARCH2(-1)

COV1_2 = 1.342 -0.034*RESID1(-1)*RESID2(-1) + 0.896*COV1_2(-1)

Page 26: FINANCIAL ECONOMETRICS

REVISED BEKK REPRESENTATION OF OIL & NATURAL GAS PRICES

11

111

11

1

22222

22

22222

12221121221112

11211

21

21111

22

11

ba

ttt

tttt

ttt

t

tt

hbah

hbbaah

hh

r

rr

toil

toilgas

Page 27: FINANCIAL ECONOMETRICS

REVISED BEKK REPRESENTATION OF OIL & NATURAL GAS PRICES

Estimation Method: ARCH Maximum Likelihood (Marquardt)Covariance specification: BEKKSample: 1997M03 2007M01Included observations: 119Total system (balanced) observations 238Disturbance assumption: Student's t distributionPresample covariance: backcast (parameter =0.5)Convergence achieved after 26 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 0.548 0.873 0.628 0.530C(2) 0.240 0.088 2.730 0.006C(3) 1.513 0.782 1.934 0.053

Variance Equation Coefficients

C(4) 1.974 1.865 1.059 0.290C(5) 0.474 0.107 4.407 0.000C(6) -0.110 0.123 -0.894 0.371C(7) 0.890 0.041 21.543 0.000C(8) 0.983 0.020 48.854 0.000

t-Distribution (Degree of Freedom)

C(9) 6.928 2.791 2.482 0.013

Log likelihood -892.0641 Schwarz criterion 15.35412Avg. log likelihood-3.748168 Hannan-Quinn criter. 15.22928Akaike info criterion15.14393

Covariance specification: BEKKGARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + B1*GARCH(-1)*B1M is a scalarA1 is diagonal matrixB1 is diagonal matrix

Tranformed Variance Coefficients

Coefficient Std. Error z-Statistic Prob.

M 1.974 1.865 1.059 0.290A1(1,1) 0.474 0.107 4.407 0.000A1(2,2) -0.110 0.123 -0.894 0.371B1(1,1) 0.890 0.041 21.543 0.000B1(2,2) 0.983 0.020 48.854 0.000

Page 28: FINANCIAL ECONOMETRICS

REVISED BEKK REPRESENTATION OF OIL & NATURAL GAS PRICESEstimated Equations:=====================RGAZ = C(1)+C(2)*ROIL(-1)

ROIL = C(3)

Substituted Coefficients:=====================RGAZ = 0.548145947197+0.240483266384*ROIL(-1)

ROIL = 1.51272216999

Variance-Covariance Representation:=====================GARCH = M + A1*RESID(-1)*RESID(-1)'*A1 + B1*GARCH(-1)*B1

Variance and Covariance Equations:=====================GARCH1 = M + A1(1,1) 2̂*RESID1(-1) 2̂ + B1(1,1) 2̂*GARCH1(-1)

GARCH2 = M + A1(2,2) 2̂*RESID2(-1) 2̂ + B1(2,2) 2̂*GARCH2(-1)

COV1_2 = M + A1(1,1)*A1(2,2)*RESID1(-1)*RESID2(-1) + B1(1,1)*B1(2,2)*COV1_2(-1)

Substituted Coefficients:

=====================

GARCH1 = 1.974+0.224*RESID1(-1)^2+0.792*GARCH1(-1)

GARCH2 = 1.974+0.012*RESID2(-1)^2+0.965*GARCH2(-1)

COV1_2 = 1.974 -0.052*RESID1(-1)*RESID2(-1) + 0.875*COV1_2(-1)

Page 29: FINANCIAL ECONOMETRICS

REVISED BEKK FORECASTING OF OIL & NATURAL GAS PRICES VOLATILITY

0

200

400

600

800

97 98 99 00 01 02 03 04 05 06

Var(RGAZ)

-40

0

40

80

120

97 98 99 00 01 02 03 04 05 06

Cov(RGAZ,ROIL)

75

80

85

90

95

97 98 99 00 01 02 03 04 05 06

Var(ROIL)

Conditional Covariance

-.2

-.1

.0

.1

.2

.3

.4

.5

.6

97 98 99 00 01 02 03 04 05 06

Cor(RGAZ,ROIL)

Conditional Correlation

Page 30: FINANCIAL ECONOMETRICS

CONSTANT CORRELATION REPRESENTATIONBollerslev(1990) employes the conditional

corelation matrix R to derive a representation of the multivariate GARCH model.

In his R matrix, Bollerslev restricts the conditional correlations to be equal to the correlation coefficients between variables, which are simply constants. Thus R is constant over time.

This representation has the advantage that H will be positive definite.

Page 31: FINANCIAL ECONOMETRICS

CONSTANT CORRELATION REPRESENTATION

1................

................................

..... 1

..... 1

21

22312

11312

NN

N

N

R

0 0

.................................. .

.......0 0 0

..0 .... 0 0

1................

................................

..... 1

..... 1

0 0

.................................. .

.......0 0 0

..0 .... 0 0

22

11

21

22312

11312

22

11

t

t

t

t

t

t

NNNN

N

N

NN h

h

h

h

h

h

H

The individual variance terms hiit are taken to be individual GARCH processes

Page 32: FINANCIAL ECONOMETRICS

CONSTANT CORRELATION REPRESENTATION OF OIL & NATURAL GAS PRICES

Estimation Method: ARCH Maximum Likelihood (Marquardt)Covariance specification: Constant Conditional CorrelationSample: 1997M02 2007M01Included observations: 120Total system (balanced) observations 240Disturbance assumption: Student's t distributionPresample covariance: backcast (parameter =0.5)Convergence achieved after 21 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 0.938 1.037 0.904 0.366C(2) 2.078 0.605 3.435 0.001

Variance Equation Coefficients

C(3) 53.143 50.532 1.052 0.293C(4) 0.152 0.148 1.027 0.305C(5) 0.449 0.454 0.989 0.323C(6) 8.735 1.906 4.583 0.000C(7) -0.145 0.041 -3.507 0.001C(8) 1.033 0.020 51.343 0.000C(9) 0.154 0.102 1.516 0.130

t-Distribution (Degree of Freedom)

C(10) 10.97096 8.493965 1.291618 0.1965

Log likelihood -893.8184 Schwarz criterion 15.29593Avg. log likelihood-3.724243 Hannan-Quinn criter. 15.15797Akaike info criterion15.06364

Covariance specification: Constant Conditional CorrelationGARCH(i) = M(i) + A1(i)*RESID(i)(-1) 2̂ + B1(i)*GARCH(i)(-1)COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))

Tranformed Variance Coefficients

Coefficient Std. Error z-Statistic Prob.

M(1) 53.143 50.532 1.052 0.293A1(1) 0.152 0.148 1.027 0.305B1(1) 0.449 0.454 0.989 0.323M(2) 8.735 1.906 4.583 0.000A1(2) -0.145 0.041 -3.507 0.001B1(2) 1.033 0.020 51.343 0.000R(1,2) 0.154 0.102 1.516 0.130

Page 33: FINANCIAL ECONOMETRICS

CONSTANT CORRELATION REPRESENTATION OF OIL & NATURAL GAS PRICES

Tranformed Variance Coefficients

Coefficient

M(1) 53.143A1(1) 0.152B1(1) 0.449M(2) 8.735A1(2) -0.145B1(2) 1.033R(1,2) 0.154

Variance Equation Coefficients

C(3) 53.143C(4) 0.152C(5) 0.449C(6) 8.735C(7) -0.145C(8) 1.033C(9) 0.154

Substituted Coefficients:=====================RGAZ = 0.937503474235

ROIL = 2.07760000977

Variance and Covariance Representations:=====================GARCH(i) = M(i) + A1(i)*RESID(i)(-1) 2̂ + B1(i)*GARCH(i)(-1)

COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))

Variance and Covariance Equations:=====================GARCH1 = C(3) + C(4)*RESID1(-1) 2̂ + C(5)*GARCH1(-1)

GARCH2 = C(6) + C(7)*RESID2(-1) 2̂ + C(8)*GARCH2(-1)

COV1_2 = C(9)*@SQRT(GARCH1*GARCH2)

Substituted Coefficients:=====================GARCH1 = 53.142 + 0.152*RESID1(-1)^2 + 0.448*GARCH1(-1)

GARCH2 = 8.735 - 0.145*RESID2(-1)^2 + 1.033*GARCH2(-1)

COV1_2 = 0.154*@SQRT(GARCH1*GARCH2)

Page 34: FINANCIAL ECONOMETRICS

CONSTANT CORRELATION FORECAST OF OIL & NATURAL GAS PRICES VOLATILITY

0

100

200

300

400

500

600

97 98 99 00 01 02 03 04 05 06

Var(RGAZ)

0

10

20

30

40

50

97 98 99 00 01 02 03 04 05 06

Cov(RGAZ,ROIL)

0

50

100

150

200

97 98 99 00 01 02 03 04 05 06

Var(ROIL)

Conditional Covariance

.146

.148

.150

.152

.154

.156

.158

.160

.162

97 98 99 00 01 02 03 04 05 06

Cor(RGAZ,ROIL)

Conditional Correlation

Page 35: FINANCIAL ECONOMETRICS

REVISED CONSTANT CORRELATION REPRESENTATION OF OIL & NATURAL GAS PRICES

Estimation Method: ARCH Maximum Likelihood (Marquardt)Covariance specification: Constant Conditional CorrelationSample: 1997M03 2007M01Included observations: 119Total system (balanced) observations 238Disturbance assumption: Student's t distributionPresample covariance: backcast (parameter =0.5)Convergence achieved after 26 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 0.781 1.079 0.724 0.469C(2) 0.199 0.109 1.834 0.067C(3) 2.233 0.573 3.899 0.000

Variance Equation Coefficients

C(4) 64.398 49.848 1.292 0.196C(5) 0.198 0.170 1.163 0.245C(6) 0.314 0.432 0.727 0.468C(7) 7.293 1.229 5.936 0.000C(8) -0.135 0.033 -4.062 0.000C(9) 1.053 0.020 51.973 0.000C(10) 0.120 0.103 1.166 0.244

t-Distribution (Degree of Freedom)

C(11) 13.509 11.166 1.210 0.226

Log likelihood -882.0092 Schwarz criterion 15.26545Avg. log likelihood-3.705921 Hannan-Quinn criter. 15.11287Akaike info criterion15.00856

Covariance specification: Constant Conditional CorrelationGARCH(i) = M(i) + A1(i)*RESID(i)(-1) 2̂ + B1(i)*GARCH(i)(-1)COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))

Tranformed Variance Coefficients

Coefficient Std. Error z-Statistic Prob.

M(1) 64.398 49.848 1.292 0.196A1(1) 0.198 0.170 1.163 0.245B1(1) 0.314 0.432 0.727 0.468M(2) 7.293 1.229 5.936 0.000A1(2) -0.135 0.033 -4.062 0.000B1(2) 1.053 0.020 51.973 0.000R(1,2) 0.120 0.103 1.166 0.244

Page 36: FINANCIAL ECONOMETRICS

REVISED CONSTANT CORRELATION REPRESENTATION OF OIL & NATURAL GAS PRICES

Estimated Equations:=====================RGAZ = C(1)+C(2)*ROIL(-1)

ROIL = C(3)

Substituted Coefficients:=====================RGAZ = 0.781034818457+0.199474480682*ROIL(-1)

ROIL = 2.23319899793

Variance and Covariance Representations:=====================GARCH(i) = M(i) + A1(i)*RESID(i)(-1) 2̂ + B1(i)*GARCH(i)(-1)

COV(i,j) = R(i,j)*@SQRT(GARCH(i)*GARCH(j))

Variance and Covariance Equations:=====================GARCH1 = C(4) + C(5)*RESID1(-1) 2̂ + C(6)*GARCH1(-1)

GARCH2 = C(7) + C(8)*RESID2(-1) 2̂ + C(9)*GARCH2(-1)

COV1_2 = C(10)*@SQRT(GARCH1*GARCH2)

Substituted Coefficients:=====================GARCH1 = 64.398 + 0.197*RESID1(-1)^2 + 0.314*GARCH1(-1)

GARCH2 = 7.292 - 0.135*RESID2(-1)^2 + 1.052*GARCH2(-1)

COV1_2 = 0.119*@SQRT(GARCH1*GARCH2)

Variance Equation Coefficients

C(4) 64.398C(5) 0.198C(6) 0.314C(7) 7.293C(8) -0.135C(9) 1.053C(10) 0.120

Tranformed Variance Coefficients

Coefficient

M(1) 64.398A1(1) 0.198B1(1) 0.314M(2) 7.293A1(2) -0.135B1(2) 1.053R(1,2) 0.120

Page 37: FINANCIAL ECONOMETRICS

REVISED CONSTANT CORRELATION FORECAST OF OIL & NATURAL GAS PRICES VOLATILITY

0

100

200

300

400

500

600

97 98 99 00 01 02 03 04 05 06

Var(RGAZ)

0

5

10

15

20

25

97 98 99 00 01 02 03 04 05 06

Cov(RGAZ,ROIL)

0

40

80

120

160

97 98 99 00 01 02 03 04 05 06

Var(ROIL)

Conditional Covariance

.112

.114

.116

.118

.120

.122

.124

.126

97 98 99 00 01 02 03 04 05 06

Cor(RGAZ,ROIL)

Conditional Correlation

Page 38: FINANCIAL ECONOMETRICS

FACTOR VOLATILITY MODELS

Page 39: FINANCIAL ECONOMETRICS

Principal Component Analysis

Page 40: FINANCIAL ECONOMETRICS

Principal Component Analysis We collect 120 financial ratios in order to asses

financial health of the firms. How can we reduce these ratios a few indices?

The production control department collect several measures in order to control process. Can we develop some indices in order to summarize the process outcomes?

In order to carry out efficient regression analysis we have to reduce multicollinearity among the explanatory variables if it exists. Can we generate some new indices in order to get orthogonal explanatory series that also contain most of the information of the original variables?

Page 41: FINANCIAL ECONOMETRICS

Principal Component Analysis in Finance

To reduce number of risk factors to a manageable dimension. For example, instead of 60 yields of different maturities as risk factors, we might use just 3 principal component.

To identy the key sources of risk. Typically the most important risk factors are parallel shifts, changes in slope and changes in convexity of the curves.

To facilitate the measurement of portfolio risk, for instance by introducing scenarios on the movements in the major risk factors.

Page 42: FINANCIAL ECONOMETRICS

Basics & Background

3

2

1

3

2

1

333231

232221

131211

x

x

x

x

x

x

a a a

a a a

a a a

xAx A is square matrix

X is a column vector

is a scalar quantity-eigenvalue

u normalized eigenvector

1uu 0uu

)A(Tr A

1'12

'1

n

1i

i

n

1i

i

Basic properties

Page 43: FINANCIAL ECONOMETRICS

Basics & Background

)xx(uy

....................

)xx(uy

)xx(uy

i'nin

i'22i

i'11i

IF matrix A composes of some observed x values

Pricipal Component Scores

Page 44: FINANCIAL ECONOMETRICS

MATHEMATICAL BACKGROUND

n'nn2

'221

'11nxn

i'i

n

1i

inxn

uu......uuuuA

uuA

A nxn square matrix

n'n

n2

'2

21

'1

1

1

i'i

n

1i i

1

uu1

......uu1

uu1

A

uu1

A

Page 45: FINANCIAL ECONOMETRICS

A BASIC EXAMPLE OF EIGENVALUES AND EIGENVECTORS

3

15

15

5

3

1

43

12

1

11

1

1

1

1

43

12

0.94868330-

0.31622777-,

0.70710678

0.70710678-

9486.

3162.

3

1*101

1031 22

7071.

7071.

1

1*21

2)1(1 22

2

1

2

1

2221

1211

x

x

x

x

a a

a a

xAx

Normalization

Page 46: FINANCIAL ECONOMETRICS

MATHEMATICAL EXAMPLE

01*3)4(*)2(

043

12IA

43

12A

88l ®1<,8l ®5<<U1 U2

Page 47: FINANCIAL ECONOMETRICS

Basics & Background

• Eigenvalue and Eigenvector:– Eigen originates in the German language and can

be loosely translated as “of itself”– Thus an Eigenvalue of a matrix could be

conceptualized as a “value of itself”– Eigenvalues and Eigenvectors are utilized in a

wide range of applications (PCA, calculating a power of a matrix, finding solutions for a system of differential equations, and growth models)

Page 48: FINANCIAL ECONOMETRICS

GEOMETRICAL APPROACH TO PRINCIPAL COMPONENT ANALYSIS

x1

x2

Mean corrected data

Page 49: FINANCIAL ECONOMETRICS

AXIS ROTATION

x1

x2

Page 50: FINANCIAL ECONOMETRICS

AXIS ROTATIONDIMEMSION REDUCTION

x1

x2 x1’x2

Page 51: FINANCIAL ECONOMETRICS

AXIS ROTATION

x1

x2

x1’

x2’

X1’ = x1*cos + x2*sin

X2’ = -x1*sin + x2*cos

A

Page 52: FINANCIAL ECONOMETRICS

AXIS ROTATION = 0 Observation x1 x2 x1Cor x2Cor 0 0 x1' x2'

1 16 8 8 5 8.000 5.0002 12 10 4 7 4.000 7.0003 13 6 5 3 5.000 3.0004 11 2 3 -1 3.000 -1.0005 10 8 2 5 2.000 5.0006 9 -1 1 -4 1.000 -4.0007 8 4 0 1 0.000 1.0008 7 6 -1 3 -1.000 3.0009 5 -3 -3 -6 -3.000 -6.000

10 3 -1 -5 -4 -5.000 -4.00011 2 -3 -6 -6 -6.000 -6.00012 0 0 -8 -3 -8.000 -3.000

Mean 8 3 0 0 0.00 0.00Variance 23.091 21.091 23.091 21.091 23.091 21.091

Covariance15.083 15.0833 Share of x1'= 52%Correlation 0.746 0.746 Correlation 0.746

Total Variance= 44.182 Total Variance= 44.182

X1’ = x1*cos 0 + x2*sin0

X2’ = -x1*sin 0 + x2*cos0

Page 53: FINANCIAL ECONOMETRICS

AXIS ROTATION = 10°

Observation x1 x2 x1Cor x2Cor 10 0.2 x1' x2'1 16 8 8 5 8.746 3.5362 12 10 4 7 5.154 6.2003 13 6 5 3 5.445 2.0874 11 2 3 -1 2.781 -1.5065 10 8 2 5 2.837 4.5776 9 -1 1 -4 0.291 -4.1137 8 4 0 1 0.174 0.9858 7 6 -1 3 -0.464 3.1289 5 -3 -3 -6 -3.996 -5.388

10 3 -1 -5 -4 -5.618 -3.07111 2 -3 -6 -6 -6.950 -4.86812 0 0 -8 -3 -8.399 -1.566

Mean 8 3 0 0 0.00 0.00Variance 23.091 21.091 23.091 21.091 28.656 15.526

Covariance15.0833 15.0833 Share of x1'= 65%Correlation 0.746 0.746 Correlation 0.717

Total Variance= 44.182 Total Variance= 44.182

X1’ = x1*cos10 + x2*sin10

X2’ = -x1*sin10 + x2*cos10

Page 54: FINANCIAL ECONOMETRICS

AXIS ROTATION = 30°

Observation x1 x2 x1Cor x2Cor 30 1 x1' x2'1 16 8 8 5 9.428 0.3332 12 10 4 7 6.963 4.0643 13 6 5 3 5.830 0.1004 11 2 3 -1 2.099 -2.3655 10 8 2 5 4.231 3.3316 9 -1 1 -4 -1.133 -3.9647 8 4 0 1 0.500 0.8668 7 6 -1 3 0.633 3.0989 5 -3 -3 -6 -5.597 -3.698

10 3 -1 -5 -4 -6.330 -0.96611 2 -3 -6 -6 -8.196 -2.19812 0 0 -8 -3 -8.429 1.400

Mean 8 3 0 0 0.00 0.00Variance 23.091 21.091 23.091 21.091 36.837 7.345

Covariance15.083 15.0833 Share of x1'= 83%Correlation 0.746 0.746 Correlation 0.448

Total Variance= 44.182 Total Variance= 44.182

X1’ = x1*cos30 + x2*sin30

X2’ = -x1*sin30 + x2*cos30

Page 55: FINANCIAL ECONOMETRICS

AXIS ROTATION = 40°

Observation x1 x2 x1Cor x2Cor 40 1 x1' x2'1 16 8 8 5 9.343 -1.3092 12 10 4 7 7.563 2.7943 13 6 5 3 5.759 -0.9144 11 2 3 -1 1.656 -2.6945 10 8 2 5 4.745 2.5466 9 -1 1 -4 -1.804 -3.7087 8 4 0 1 0.643 0.7668 7 6 -1 3 1.161 2.9419 5 -3 -3 -6 -6.154 -2.670

10 3 -1 -5 -4 -6.401 0.14711 2 -3 -6 -6 -8.453 -0.74312 0 0 -8 -3 -8.058 2.841

Mean 8 3 0 0 0.00 0.00Variance 23.091 21.091 23.091 21.091 38.468 5.714

Covariance15.083 15.0833 Share of x1'= 87%Correlation0.746 0.746 Correlation 0.127

Total Variance= 44.182 Total Variance= 44.182

X1’ = x1*cos40 + x2*sin40

X2’ = -x1*sin40 + x2*cos40

Page 56: FINANCIAL ECONOMETRICS

AXIS ROTATION = 44°

X1’ = x1*cos44 + x2*sin44

X2’ = -x1*sin44 + x2*cos44

Observation x1 x2 x1Cor x2Cor 0.2404 0.755239 x1' x2'1 16 8 8 5 9.252 -1.8432 12 10 4 7 7.711 2.3553 13 6 5 3 5.697 -1.2434 11 2 3 -1 1.499 -2.7845 10 8 2 5 4.884 2.2706 9 -1 1 -4 -2.014 -3.5987 8 4 0 1 0.685 0.7288 7 6 -1 3 1.328 2.8709 5 -3 -3 -6 -6.297 -2.312

10 3 -1 -5 -4 -6.382 0.51511 2 -3 -6 -6 -8.481 -0.25612 0 0 -8 -3 -7.881 3.299

Mean 8 3 0 0 0.00 0.00Variance 23.091 21.091 23.091 21.091 38.576 5.606

Covariance 15.08333 15.08333 Share of x1'= 87%Correlation 0.746 0.746 Correlation 0.000

Total Variance= 44.182 Total Variance= 44.182

Page 57: FINANCIAL ECONOMETRICS

AXIS ROTATION = 70°

Observation x1 x2 x1Cor x2Cor 70 1 x1' x2'1 16 8 8 5 7.438 -5.8032 12 10 4 7 7.947 -1.3603 13 6 5 3 4.531 -3.6704 11 2 3 -1 0.088 -3.1615 10 8 2 5 5.383 -0.1666 9 -1 1 -4 -3.415 -2.3107 8 4 0 1 0.939 0.3438 7 6 -1 3 2.476 1.9679 5 -3 -3 -6 -6.665 0.763

10 3 -1 -5 -4 -5.471 3.32711 2 -3 -6 -6 -7.692 3.58112 0 0 -8 -3 -5.559 6.488

Mean 8 3 0 0 0.00 0.00Variance 23.091 21.091 23.091 21.091 31.918 12.264

Covariance15.083 15.0833 Share of x1'= 72%

Correlation0.746 0.746 Correlation -0.669

Total Variance= 44.182 Total Variance= 44.182

X1’ = x1*cos70 + x2*sin70

X2’ = -x1*sin70 + x2*cos70

Page 58: FINANCIAL ECONOMETRICS

FINDING OPTIMAL °

°

Portion of x1’

over total variance

*

87%

While x1 dimension explains 52% of the total

variance, When ° = 40, new x1

’ dimension explains 87% of total variance

Page 59: FINANCIAL ECONOMETRICS

ANALYTICAL APPROACH TO PRINCIPAL COMPONENT ANALYSISAssume there are p variables

1 = w11*x1+w12*x2+....+w1p*xp

2 = w21*x1+w22*x2+....+w2p*xp

........................................

p = wp1*x1+wp2*x2+....+wpp*xp

s are principal components and wij is the weight of the jth variables on the ith principal component

Var(1) > Var(2)> ... >Var(p)wi1

2 + wi22+....+wip

2 = 1 i=1,2,...pwi1*wj1+wi2*wj2+....+wip*wjp = 0 for all ij

Page 60: FINANCIAL ECONOMETRICS

ANALYTICAL APPROACH TO PRINCIPAL COMPONENT ANALYSIS• Assume there are p variables

1 = w11*x1+w12*x2+....+w1p*xp

2 = w21*x1+w22*x2+....+w2p*xp

........................................

p = wp1*x1+wp2*x2+....+wpp*xp s are principal components and wij is the weight of the jth variables

on the ith principal component X1

’ = cos * x1 + sin * x2

X2’ = -sin * x1 + cos * x2

1 = w11*x1 + w12*x2

2 = w21*x1 + w22*x2

Page 61: FINANCIAL ECONOMETRICS

MATRIX ALGEBRA APPROACH TO PRINCIPAL COMPONENT ANALYSIS

Assume there are p variables1 = w11*x1+w12*x2+....+w1p*xp

2 = w21*x1+w22*x2+....+w2p*xp

........................................

p = wp1*x1+wp2*x2+....+wpp*xp

MATRIX REPRESANTATION 1 = W1

’X 2 = W2

’X W2’*W2=1 W2’*W1=0

Page 62: FINANCIAL ECONOMETRICS

MATRIX ALGEBRA APPROACH TO PRINCIPAL COMPONENT ANALYSISVar(1) = Var(W1

’X) = W1’S W1

S = The Variance-Covariance matrix of original variables

Max. Var(1) = W1’S W1

st. W2’*W2=1

If 1, 2, ... , p are the eigenvalues of S

Sw1= 1w1

Var(1)= W1’S W1= W1

’ 1w1= 1W1’w1=1

Variance explained by the first principal component = 1/Trace(S)

Trace(S) = Sum of all isVariance explained by the first k principal components =

(1+2+...+k)/Trace(S)

Page 63: FINANCIAL ECONOMETRICS

VARIANCE EXTRACTION METHODS

VARIANCE-COVARIANCE MATRIX THE SIZE EFFECT INCLUDED THE ANALYSIS

CORRELATION MATRIX THE VARIABLES ARE STANDIZED FIRST, SO

THAT MEAN= 0 & VARIANCE= 1 OF ALL VARIABLES

THE VARIANCE COVARIANCE MATRIX OF THE STANDARDIZED VARIABLES IS THE CORRELATION MATRIX

THE SIZE EFFECT EXCLUDED FROM THE ANALYSIS

Page 64: FINANCIAL ECONOMETRICS

VARIANCE EXTRACTION METHODS A principal component represantation based on the

variance-covariance matrix has the advantage of providing a linear factor model for the returns, and not a linear factor model for the standardized returns, as is the case when correlation matrix is used. Standardization makes each variable has common mean and variance, 0 and 1 respectively.

A PCA on the covariance matrix captures all the movements in the variables, which may be dominated by the differing volatilities of individual variables. A PCA on the correlation matrix only captures the comovements in returns and ignores their individual volatilities.

It is only when all variables have similiar volatilities that the PCA will have similar characteristics.

Page 65: FINANCIAL ECONOMETRICS

STATISTICAL TESTS in PCA

CONFIDENCE INTERVAL FOR THE EIGENVALUES OF

)1(2ˆ of Variance Sample nii

)1(21

ˆ

)1(21

ˆ

]2/[]2/[

nZnZi

ii

Page 66: FINANCIAL ECONOMETRICS

STATISTICAL TESTS in PCA

2/)2)(1(dof with ~

ˆln

where

)ˆlnln](6/)22()1[(

themof oneleast at :H

....:H

22

1

1

22

1

3210

mmX

m

mmmmknX

mk

kjj

mk

kjj

mkkkk

If X2 > table Reject H0

Page 67: FINANCIAL ECONOMETRICS

STATISTICAL TESTS in PCA

2/)2)(1(dof with ~

ˆln

and where

)ˆlnln(*

])(6/)222()1[(

22

1

1

1

22

mmX

mkpm

m

mmmknX

mk

kjj

mk

kjj

k

jj

If X2 > table

Reject H0

If we want to test the last p-k roots

themof oneleast at :H

....:H

1

3210 mkkkk

Page 68: FINANCIAL ECONOMETRICS

EXAMPLE1= 5.7735 2= 0.9481 3= 0.3564 4= 0.1869

5= 0.1167 6= 0.0967 7= 0.0803 8= 0.0314

n = 292H0: 2=3 H1: 23 hence k = 1 m = 2

0

21

2

2

22

HReject e therefor991.556.66

05.0for 991.5)2(

22/)2)(1(

56.66

)0317.105330.08547.0(289

)3564.0ln9481.0ln6523.0ln2](2*6

222*2)11292[(

mmdof

X

X

X

Page 69: FINANCIAL ECONOMETRICS

HOW MANY PRINCIPAL COMPONENTS? IF ALL THE INFORMATION IS EXTRACTED,

P COMPONENTS SHOULD BE SELECTED RESEARCHERS CAN WANT TO ELIMINATE

MARGINAL INFORMATION SO THAT ONLY MAIN INFO. IS UNDERLINEDEXPLAIN RELATIVELY LARGE PERCENTAGE OF THE TOTAL VARIATION. 70-90% ARE USUALLY SUGGESTED FIGURES.EXCLUDE THOSE PRINCIPLE COMPONENTS WHOSE EIGENVALUES ARE LESS THAN AVERAGE EIGENVALUE. IF CORRELATION MATRIX IS USED, EXCLUDE PC WHOSE EIGENVALUES ARE LESS THAN 1. IF SAMPLE SIZE SMALL, THE CUT OFF POINT CAN BE LOWER, 0.7.USE SCREE PLOT TO CATCH THE “ELBOW” AND THE ELBOW POINTS THE NUMBER OF EIGENVALUES SHOULD BE EXCLUDED.

Page 70: FINANCIAL ECONOMETRICS

Interpretation of PCsThe first principle component captures a

common trend in assets or interest rates. If the first PC changes at atime when the other components are fixed, then the returns(or changes in interest rates) all move by roughly the same amount.

The second and higher order PC have no intuitive interpretation. But when we use factor rotation, some PC may represent a subgroups of the variables.

Page 71: FINANCIAL ECONOMETRICS

A Numerical Example• Original data values & mean centered:

11.511.9

1816.3

16.314.5

12.411

16.317

13.515

1719

14.516

1514

1412

3.35-2.77-

3.151.63

1.450.17-

2.45-3.67-

1.452.33

1.35-0.33

2.154.33

0.35-1.33

0.150.67-

0.85-2.67-

Page 72: FINANCIAL ECONOMETRICS

ORIGINAL & MEAN CENTERED

DATA VALUES

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 -6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

ORIGIN SHIFTING

Page 73: FINANCIAL ECONOMETRICS

A Numerical Example• Covariance Matrix results in:

• Which has Eigenvalues and Eigenvectors of:

4.29611114.1227777

4.12277776.3845555

0.6141953-0.7891540-

0.7891540-0.6141953

9.5932970

01.08737

Page 74: FINANCIAL ECONOMETRICS

A Numerical Example

• Transformed values = EigenvectorsT x DataT

-0.96912 -0.52988 1.09308 0.96278 1.26804 0.28680 -0.32067 -1.24869 -1.48470 0.942342.62911 0.43660 -0.83461 -4.73756 0.56874 -2.72931 4.40097 -0.75643 -3.22104 4.24351

u1=u2=

Which of the two is the principle component?

Check magnitude of Eigenvalues

9.5932970

01.08737

Page 75: FINANCIAL ECONOMETRICS

ORTHOGONAL GARCH

22112

22111

XbXbF

XaXaF

22112

22111

FFX

FFaX

][][

][][

][][][][

][][][][

)])([(],[

][][][][

][][][][

222111

22221111

2222121221211111

2222112222111111

2211221121

2221

2122112

2221

2122111

FVARFVARa

FFCOVFFCOVa

FFCOVFFCOVFFCOVaFFCOVa

FFCOVFFCOVFFaCOVFFaCOV

FFFFaCOVXXCOV

FVarFVarFFVARXVAR

FVarFVarFFaVARXVAR

COV[F1,F2]=0

Page 76: FINANCIAL ECONOMETRICS

FACTOR GARCH

1. Calculate eigenvalues and eigenvectors

2. Determine the number of eigenvectors3. Calculate the factor scores and keep

the equations4. Estimate a GARCH models for the each

factor scores.5. Using factor score equations estimate

Variances and Covariances