Top Banner

of 22

Final Presentation_Melanie Rondot

Apr 04, 2018

Download

Documents

Syed Haider Ali
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Final Presentation_Melanie Rondot

    1/22

    VOC Reduction byVOC Reduction byDynamic CondenserDynamic Condenser

    DesignDesignMelanieMelanie RondotRondotAugust 5, 2004August 5, 2004

    University of Illinois at Chicago NSFUniversity of Illinois at Chicago NSF--REU 2004REU 2004

    Advisors:Advisors:Professor Andreas LinningerProfessor Andreas LinningerAndrs Malcolm, graduate studentAndrs Malcolm, graduate student

  • 7/30/2019 Final Presentation_Melanie Rondot

    2/22

    Organic solvents

    Volatile Organic Compounds (VOCs) in air emissionsVOC emissions regulated by EPA

    Pharmaceutical ProcessPharmaceutical Process

    Source: EPA Office ofCompliance SectorNotebook Project: Profile ofthe PharmaceuticalManufacturing Industry;September 1997

    Flow diagram for typical pharmaceutical process:

    Reactor

    Condenser

    Product

  • 7/30/2019 Final Presentation_Melanie Rondot

    3/22

    Project DescriptionProject Description

    Surface condensationSurface condensation Condenser Model using MATLABCondenser Model using MATLAB

    Steady StateSteady State

    DynamicDynamic

    UncertaintyUncertainty

    Operating ConditionsOperating Conditions

    Estimated ParametersEstimated Parameters

    Control SystemControl System

  • 7/30/2019 Final Presentation_Melanie Rondot

    4/22

    Condenser ModelCondenser Model

    Fcool,Tcooln-1

    Fgn-1,Tg

    n-1

    Wall, Twalln

    Coolant

    Tcooln , Ncool

    Gas

    TgN,Ng

    N

    Fcon,Tco

    n

    Fcool,Tcooln

    Qw-cooln

    Fgn,Tg

    n

    Qw-gn

    Finite Volume Discretization:

    Gas

    Inlet

    Gas

    Outlet

    Coolant

    InletCoolant

    Outlet

    Condensate Outlets

  • 7/30/2019 Final Presentation_Melanie Rondot

    5/22

    Condenser TheoryCondenser Theory

    Energy BalancesEnergy Balances Mass BalancesMass Balances

    Diffusion EquationsDiffusion Equations

  • 7/30/2019 Final Presentation_Melanie Rondot

    6/22

    Diffusion EquationsDiffusion Equations

    0I g

    n n n

    condensatey y F = No condensationNo condensation

    1. ..ln 1

    I

    n

    n ABcondensate n

    g

    yA D CF y

    =

    DiffusionDiffusion--Controlled CondensationControlled Condensation

  • 7/30/2019 Final Presentation_Melanie Rondot

    7/22

    MATLAB ModelMATLAB Model

    User defines

    Condenser geometry

    Physical properties

    Initial temperatures

    Initial flow rates

    Program calculates

    system variables

    (h, Dab, Cp, etc)

  • 7/30/2019 Final Presentation_Melanie Rondot

    8/22

    Steady State ModelSteady State Model

    Simultaneous solution of mass and energy balances using fsolve

    Temperature, concentration, and flow profiles

    0 0.5 1 1.5 2 2.5 3200

    300

    400

    Steady State Condenser

    Temp(K)

    0 0.5 1 1.5 2 2.5 30

    0.1

    0.2

    VOC

    Conc.

    (molfr.)

    0 0.5 1 1.5 2 2.5 3

    5

    10

    15

    Fconb(mol/s)

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    Length (m)

    Fcon(mol/s)

    gas

    wall

    coolant

    gas

    w all

    20% Inlet VOC Concentration

    0 0.5 1 1.5 2 2.5 30

    200

    400

    Steady State Condenser

    Temp(K)

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    VOC

    Conc.

    (molfr.)

    0 0.5 1 1.5 2 2.5 3

    10

    20

    30

    Fconb(mol/s)

    0 0.5 1 1.5 2 2.5 30

    0.5

    1

    Length (m)

    Fcon(mol/s)

    coolant

    ga s

    wa ll

    gas

    wall

    40% Inlet VOC Concentration

  • 7/30/2019 Final Presentation_Melanie Rondot

    9/22

    ExplanationExplanation

    Appropriate concentrationAppropriate concentrationgradientgradient ----> condensation> condensation

    Energy balancesEnergy balances

    n n

    w g w cool Q Q =

    .( )

    n n n

    w cool cool w cool Q T T

    =

    ( ). .( ) ( )n n n n n v nw g g condensate pg g w g wQ Q F C T T H T = + +

    .( )n n ng g g wQ T T=

    0 0.5 1 1.5 2-1

    0

    1

    Steady State Condenser

    Qgas(kJ/s)

    0 0.5 1 1.5 20

    10

    20

    30

    Qcond(kJ/s)

    0 0.5 1 1.5 20

    10

    20

    30

    Length (m)

    Qd

    isp(kJ/s)

    40% Inlet VOC Concentration -Heat Flow Profiles

  • 7/30/2019 Final Presentation_Melanie Rondot

    10/22

    Limiting ConditionLimiting Condition

    Heat Transfer Limited CondensationHeat Transfer Limited Condensation

    ( );

    ( )

    n

    w gn n n n n

    g w g w condensate v n

    g w

    QT T T T F

    H T

    = =

    0 0.5 1 1.5 2 2.5 3200

    300

    400

    Steady State Condenser

    Temp(K)

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    VOC

    Conc.

    (molfr.)

    0 0.5 1 1.5 2 2.5 320

    25

    30

    Fconb(mol/s)

    0.5

    1

    on(mol/s)

    ga s

    wall

    coolantga s

    wall

    0 0.50

    0.5

    1

    Qgas(kJ/s)

    20

    30

    nd(kJ/s)

    40% Inlet VOC Concentration with Heat Transfer Limitation

  • 7/30/2019 Final Presentation_Melanie Rondot

    11/22

    Dynamic ModelDynamic Model

    Introduces change into system

    Simultaneous solution of mass

    and energy balances using

    ode15s

    Initial values obtained fromsteady state solution

  • 7/30/2019 Final Presentation_Melanie Rondot

    12/22

    Dynamic Model OutputDynamic Model Output

  • 7/30/2019 Final Presentation_Melanie Rondot

    13/22

    Uncertain ParametersUncertain Parameters

    Operating ConditionsOperating Conditions Inlet Gas TemperatureInlet Gas Temperature

    Inlet Coolant TemperatureInlet Coolant Temperature

    Inlet Flowrate of Condensable SpeciesInlet Flowrate of Condensable Species

    Estimated ParametersEstimated Parameters

    Heat Transfer Coefficient of GasHeat Transfer Coefficient of Gas Diffusion CoefficientDiffusion Coefficient

  • 7/30/2019 Final Presentation_Melanie Rondot

    14/22

    Uncertainty Evaluation:Uncertainty Evaluation:ProcedureProcedure

    LevelsLevels Tg_inTg_in: 350 5 K: 350 5 K

    Tcool_inTcool_in: 230 2 K: 230 2 K

    Fconb_inFconb_in: 15 1 mol/s: 15 1 mol/s

    HgasHgas (initial): calculated 20%(initial): calculated 20%

    Dab (initial): calculated 20%Dab (initial): calculated 20%

  • 7/30/2019 Final Presentation_Melanie Rondot

    15/22

    Outlet Gas Temperature vs. Inlet Gas Temperature

    y = 0.8814x - 41.819

    R2

    = 1

    261

    262

    263

    264

    265

    266

    267

    268

    269

    270

    271

    272

    344 345 346 347 348 349 350 351 352 353 354 355 356

    Inlet Gas Temperature (K)

    OutletGasTemperature(K)

    Outlet Gas Temperature vs. Inlet Coolant Temperature

    y = 0.1407x + 234.3

    R2

    = 0.9996

    266.3

    266.4

    266.5

    266.6

    266.7

    266.8

    266.9

    267.0

    227.6 228.0 228.4 228.8 229.2 229.6 230.0 230.4 230.8 231.2 231.6 232.0 232.4

    Inlet Coolant Temperature (K)

    OutletGasTemperature(K)

    SS Uncertainty Evaluation:SS Uncertainty Evaluation:Independent Variation of 1 VariableIndependent Variation of 1 Variable

    Outlet Gas Temperature vs. Inlet Condensable Flowrate

    y = -4.7536x + 337.95

    R2

    = 1

    260

    262

    264

    266

    268

    270

    272

    13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2

    Inlet Condensable Flowrate (mol/s)

    OutletGasTemperature(K)

  • 7/30/2019 Final Presentation_Melanie Rondot

    16/22

    SS Uncertainty Evaluation:SS Uncertainty Evaluation:Independent Variation of 1 VariableIndependent Variation of 1 Variable

    Outlet Gas Temperature vs. Heat Transfer Coefficient of Gas (Initial Value)

    y = -450.94x + 326.71

    R2

    = 0.9991

    250

    255

    260

    265

    270

    275

    280

    285

    0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17

    Heat Transfer Coefficient of Gas (Initial Value) ( kJ / (s*m^2*K) )

    OutletGasTemperature(K)

    Outlet Gas Temperature vs. Diffusion Coefficient (Initial Value)

    y = -14.415x + 324.42

    R2

    = 0.9994

    250

    255

    260

    265

    270

    275

    280

    3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

    Diffusion Coefficient (Initial Value) ( mol / (s*m^2*atm) )

    OutletGasTemperature

    (K)

  • 7/30/2019 Final Presentation_Melanie Rondot

    17/22

    SS Uncertainty Evaluation:SS Uncertainty Evaluation:Simultaneous Variation of 2 VariablesSimultaneous Variation of 2 VariablesOutlet Gas Temperature vs. Variation in Inlet Gas and Coolant Temperatures

    y = 0.9423x + 266.65

    R2

    = 1

    266

    267

    268

    269

    270

    271

    272

    0 1 2 3 4 5 6

    Level of Variation in Inlet Gas and Coolant Temperatures

    OutletGasTemperature(K)

    Outlet Gas Temperature vs. Variation in Inlet Coolant Temperature

    and Inlet Condensable Flowrate

    y = 1.0037x + 266.66

    R2

    = 1

    266

    267

    268

    269

    270

    271

    272

    0 1 2 3 4 5 6

    Level of Variation in Inlet Coolant Temperature and Inlet Condensable Flowrate

    OutletGasTemperature(K)

    Outlet Gas Temperature vs. Variation in Inlet Gas Temperature

    and Inlet Condensable Flowrate

    y = 1.8291x + 266.66

    R2

    = 1

    266

    268

    270

    272

    274

    276

    278

    0 1 2 3 4 5 6

    Level of Variation in Inlet Gas Temperature and Inlet Condensable Flowrate

    OutletGasTemperature(K)

  • 7/30/2019 Final Presentation_Melanie Rondot

    18/22

    Control SystemControl System

    Influence system toward operation about set point by adjusting

    coolant flowrate

    ( 1)e Tg n Tsp= + Error: Control Action: 1*( )IT

    Gc kc e edt = +

  • 7/30/2019 Final Presentation_Melanie Rondot

    19/22

    Control System:Control System:Decrease Inlet Coolant TemperatureDecrease Inlet Coolant Temperature

    0 50 100 150 200 250230

    240

    250

    260

    270

    Temporary reponse of element a

    Time (s)

    Temp(K)

    0 50 100 150 200 250266

    266.5

    267

    267.5

    268

    268.5

    Time (s )

    GasTemp(K)

    0 50 100 150 200 250-2

    -1.5

    -1

    -0.5

    0

    0.5

    Time (s)

    Error(K)

    0 50 100 150 200 2500

    5

    10

    15

    Time (s )

    Coolant

    Flowrate(kg/s)

    Ga s

    Coolant

    Wall

    Response to 20% Decrease in Inlet Coolant Temperature at t = 120s

    Tsp = 268.2K

  • 7/30/2019 Final Presentation_Melanie Rondot

    20/22

    Control System:Control System:Increase Inlet Coolant TemperatureIncrease Inlet Coolant Temperature

    Response to 20% Increase in Inlet Coolant Temperature at t = 120s

    Tsp = 268.2K

  • 7/30/2019 Final Presentation_Melanie Rondot

    21/22

    Suggested Future WorkSuggested Future Work

    Run simulations and uncertainty trials for systems withRun simulations and uncertainty trials for systems withdifferent species and condenser geometriesdifferent species and condenser geometries

    Introduce system variable calculations into model forIntroduce system variable calculations into model fortreatment of inlet streams containing more than onetreatment of inlet streams containing more than one

    condensable speciescondensable species

    Compare simulation results with experimental data to judgeCompare simulation results with experimental data to judgeaccuracy and determine magnitude of error in parameteraccuracy and determine magnitude of error in parameterestimations (estimations (CpgasCpgas,, hgashgas, Dab), Dab)

    Gather information regarding cryogenic cooling systems andGather information regarding cryogenic cooling systems andcost data for condenser construction and operationcost data for condenser construction and operation

  • 7/30/2019 Final Presentation_Melanie Rondot

    22/22

    AcknowledgementsAcknowledgements

    Faculty, graduate students, and postFaculty, graduate students, and post--doctoral researchers indoctoral researchers inthe Chemical Engineering Department at the University ofthe Chemical Engineering Department at the University ofIllinois at Chicago, particularly Professor AndreasIllinois at Chicago, particularly Professor Andreas LinningerLinningerandandAndrsAndrs MalcolmMalcolm

    The National Science FoundationThe National Science Foundation