Top Banner

of 14

Files 2 Lectures Lec19

Jul 07, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/19/2019 Files 2 Lectures Lec19

    1/14

     

    Interacting vs. Noninteracting Systems

       C   h  a  p   t  e  r   6

    • Consider a process with several invariables and several output

    variables. The process is said to be interacting  if:o Each input affects more than one output.

      or o A change in one output affects the other outputs.

      Otherwise, the process is called noninteracting .

    • As an eample, we will consider the two li!uid"level storage

    s#stems shown in $igs. %.& and '.1&.

    • (n general, transfer functions for interacting processes are more

    complicated than those for noninteracting processes.

  • 8/19/2019 Files 2 Lectures Lec19

    2/14

     

       C   h  a  p   t  e  r   6

    $igure %.&. A noninteracting s#stem:

     two surge tan*s in series.

    $igure '.1&. Two tan*s in series whose li!uid levels interact.

  • 8/19/2019 Files 2 Lectures Lec19

    3/14

     

       C   h  a  p   t  e  r   6

    11 1 +%"%-i

    dh A q q

    dt = −

    1 11

    1

    +%"%-q h R=

    /ubstituting +%"%- into +%"%- eliminates q1:

    11 1

    1

    1

    +%"0-idh

     A q hdt R= −

    $igure %.&. A noninteracting s#stem:

     two surge tan*s in series.

    Mass Balance:

    Valve Relation:

  • 8/19/2019 Files 2 Lectures Lec19

    4/14

     

       C   h  a  p   t  e  r   6

    2utting +%"%- and +%"0- into deviation variable form gives

    11 1

    1

    1+%"01-i

    dh A q h

    dt R

    ′′ ′= −

    1 11

    1+%"0)-q h

     R′ ′=

    The transfer function relating to is found b#

    transforming +%"01- and rearranging to obtain

    ( )1 H s′   ( )1iQ s′

    ( )

    ( )

    1 1 1

    1 1 1

    +%"0&-

    13 1i

     H s   R K 

    Q s A R s s

    ′= =

    ′  + +

    where and /imilarl#, the transfer function

    relating to is obtained b# transforming +%"0)-.1 1 K R@ 1 1 13 . A R@

    ( )1Q s′   ( )1 H s′

  • 8/19/2019 Files 2 Lectures Lec19

    5/14

     

       C   h  a  p   t  e  r   6

    ( )

    ( )1

    1 1 1

    1 1+%"0%-

    Q s

     H s R K 

    ′= =

    The same procedure leads to the corresponding transfer functionsfor Tan* ),

    ( )

    ( )) ) )

    ) ) ) )

    +%"00-13 1

     H s   R K 

    Q s A R s s

    ′= =

    ′   + +

    ( )

    ( ))

    ) ) )

    1 1+%"0'-

    Q s

     H s R K 

    ′= =

    where and 4ote that the desired transfer

    function relating the outflow from Tan* ) to the inflow to Tan* 1

    can be derived b# forming the product of +%"0&- through +%"0'-.

    ) ) K R@ ) ) ).3   A R@

  • 8/19/2019 Files 2 Lectures Lec19

    6/14

     

       C   h  a  p   t  e  r   6

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )) ) ) 1 1

    ) 1 1

    +%"05-i i

    Q s Q s H s Q s H s

    Q s H s Q s H s Q s

    ′ ′ ′ ′ ′=

    ′ ′ ′ ′ ′

    or 

    ( )

    ( )) ) 1

    ) ) 1 1

    1 1+%"0-

    3 1 3 1i

    Q s   K K 

    Q s K s K s

    ′=

    ′   + +

    which can be simplified to #ield

    ( )

    ( ) ( ) ( )

    )

    1 )

    1+%"0-

    3 1 3 1i

    Q s

    Q s s s

    ′=

    ′   + +

    a second"order transfer function +does unit# gain ma*e sense on

     ph#sical grounds6-. $igure %.% is a bloc* diagram showing

    information flow for this s#stem.

  • 8/19/2019 Files 2 Lectures Lec19

    7/14

     

    7loc* 8iagram for 4oninteracting

    /urge Tan* /#stem

    $igure %.%. (nput"output model for two li!uid surge tan*s in

    series.

  • 8/19/2019 Files 2 Lectures Lec19

    8/14

     

    Dynamic Model of An Interacting Process

       C   h  a  p   t  e  r   6

    ( )1 1 )1

    1+'"5-q h h

     R= −

    The transfer functions for the interacting s#stem are:

    $igure '.1&. Two tan*s in series whose li!uid levels interact.

  • 8/19/2019 Files 2 Lectures Lec19

    9/14

     

       C   h  a  p   t  e  r   6

    ( )

    ( )

    ( )( )

    ( )

    ( )

    ( )

    ( )

    ) )) )

    )) )

    1 1

    ) )

    1 ) ) 11 ) 1 ) ) 1 )

    1 )

    +'"5%-3 )93 1

    13 )93 1

    3 1

    +'"5)-3 )93 1

    where

    3 33 3 3 , 9 , and 3 ;

    )3 3

    i

    i

    a

    i

    a

     H s   R

    Q s   s s

    Q sQ s   s s

     H s K s

    Q s   s s

     R A R R A R R

    ′=

    ′   + +

    ′ =′   + +

    ′ ′   +

    =′   + +

    + ++@ @

    (n Eercise '.10, the reader can show that 9

  • 8/19/2019 Files 2 Lectures Lec19

    10/14

     

    Model Comparison

    • Noninteracting system

    ( )

    ( ) ( ) ( )

    1 1 1 ) ) )

    )

    1 )

    where 3 and 3 .

    1+%"0-

    3 1 3 1i

     A R A R

    Q s

    Q s s s

    ′=

    ′   + +

    @ @

    • Interacting system

    ( )( )

    1 )

    )) )

    where9 1 and 3 3 3

    13 )93 1i

    Q sQ s   s s

    >

    =′   + +

    @

    • General Conclusions1. The interacting s#stem has a slower response.  +Eample: consider the special case where τ  τ1= τ2.)

      ). ?hich two"tan* s#stem provides the best damping  of inlet flow disturbances6

       C   h  a  p   t  e  r   6

  • 8/19/2019 Files 2 Lectures Lec19

    11/14

     

       C   h  a  p   t  e  r   6

    Multiple-Input, Multiple Output

    (MIMO !rocesses

    • @ost industrial process control applications involved a number

    of input +manipulated- and output +controlled- variables.

    • These applications often are referred to as multiple"input;

    multiple"output +@(@O- s#stems to distinguish them from the

    simpler single"input;single"output +/(/O- s#stems that have

     been emphasi=ed so far.

    • @odeling @(@O processes is no different conceptuall# than

    modeling /(/O processes.

  • 8/19/2019 Files 2 Lectures Lec19

    12/14

     

       C   h  a  p   t  e  r   6

    • $or eample, consider the s#stem illustrated in $ig. '.1%.

    • ere the level h in the stirred tan* and the temperature T  are to

     be controlled b# adBusting the flow rates of the hot and cold

    streams wh and wc, respectivel#.

    • The temperatures of the inlet streams T h and T c represent

     potential disturbance variables.

    •  4ote that the outlet flow rate w is maintained constant and the

    li!uid properties are assumed to be constant in the following

    derivation.

    +'"-

  • 8/19/2019 Files 2 Lectures Lec19

    13/14

     

       C   h  a  p   t  e  r   6

    $igure '.1%. A multi"input, multi"output thermal miing process.

  • 8/19/2019 Files 2 Lectures Lec19

    14/14

     

       C   h  a  p   t  e  r   6