Top Banner

of 22

Fermi Surface of Metals

Mar 07, 2016

Download

Documents

Atowar Rahman

Electrons in metals
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Dr. Michael Sutherland Cavendish Quantum Materials Group

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page1of22

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page2of22

    OutlineandGoals

    ReviewofFermiDiracStaFsFcs,theFreeelectronGas.

    Reviewofelementarybandstructuretheory,nearlyfreeelectronsmodels.

    ExamplesofrealbandstructuresandrealFermisurfaces

    OverviewofExperimentalTechniquesforprobingtheFermiSurface(QuantumOscillaFons,ARPES)

    Detailedlistforfurtherreading

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page3of22

    TheFermiDiracDistribuFon

    ElectronsarefermionsparFcleswithhalfintegerspinthatobeythePauliExclusionPrinciple:notwofermionsmayhaveexactlythesamesetofquantumnumbers.

    ForasystemofidenFcalfermions,theprobabilitythatasingleparFclestatewithenergyEisoccupiedisgivenby

    inthisexpressionisthechemicalpotenFal,oRendenedastheenergywherefD(E,T)=.

    isanimportantenergyscalethatismaterialdependent.AtT=0,wedenetheFermienergyEFbyEF=(T=0).

    AtT=0,theFermienergyisthedividinglinebetweenlledandunlledquantumstates.

    TheenergydependenceoffD(E,T)changesdramaFcallyasafuncFonofT.

    When/kT>>1(lowtemperatures)thefuncFonresemblesastepfuncFoncenteredatE=EFand

    When/kT

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page4of22

    TheSommerfeldmodelofametalusesFermiDiracStaFsFcstotakeintoaccountthequantumnatureofelectrons.WeignorethedetailsoftheatomicpotenFal.

    EachelectronsaFsesthefreeparFcleSchrodingerequaFonwithperiodicboundarycondiFonswithperiodL:

    with

    Thus,thereisonedisFncttripletofquantumnumberskx,ky,kzforthevolumeelement(2/L)3,andTWOelectronscanlleachstate(accounFngforspin).

    ForelectronsinanionicsolidofaveragepotenFalV0theenergyisgivenby

    (shiRzeroofenergyupbyaconstantV0)

    Inatypicalmetalwehavemanyfreeelectrons.Theyoccupystateswiththelowestenergyrst,thenllprogressivelyhigherenergystates.

    IfwehaveNelectrons,thevolumeofkstateslledisasphereofradiuskF:

    k(r) = exp(ik r)(1)

    1

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    1

    Image: Sutton, McGill Physics

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13

    (4)

    1

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    1

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me

    1

    TheFreeElectronFermiGasII

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page5of22

    TheFreeElectronFermiGasII

    Thecorrespondingelectronenergywhenk=kFissimply

    ThisleadstotheinterpretaFonthattheFermisurfaceisasurfaceofconstantenergyEFinkspace.

    Formanymetals,theFermienergyisveryhighcomparedtothethermalenergyatroomtemperature,kBT

    ItisoRenusefultodenetheFermitemperatureasTF=EF/kB.Since300K

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page6of22

    TheNearlyFreeElectronModelI

    Inrealmetals,onemusttakeintoaccounttheperiodicityofthelapce,whichmodiesthepotenFalandhencethewavefuncFonsoluFonstotheSchrodingerequaFon.

    Theproblemiseasiesttotackleinreciprocalspace.ForarealspacelapcewithlapcetranslaFonvectors

    Recallthatwemaydenethereciprocallapcevectorsby:

    TheperiodicityofthepotenFalV(r)allowustowrite:

    ThewavefuncFonsoluFonsofthefreeelectroncase(planewaves)arealsomodiedtoreecttheperiodicityofthepotenFal.

    HenceBlochstheorem:

    whereisafuncFonthathastheperiodicityofthepotenFalandareFouriercoecients.

    WecanwritedowntheSchrodingerequaFonusingtheseresults.

    ThesoluFonforthisequaFonofcoecientsgivesusthewavefuncFonsandenergystatesoftheelectronsinthepotenFal.

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me(5)

    EF =h2kF 2

    2me=

    h2

    2me(3pi2n)

    23

    (6)

    eiGnx Gn = npi/a (7)

    (8)

    k(r) = uk(r)eikr(9)

    1

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. n1, n2, n3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . .

    Vkspace = 43pik3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k)=-V0 +h2k2

    2me= h

    2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/a

    k(r) = uk(r)eikr

    k(x) = uk(x)eikx =Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(x) = uk(x)eikx =

    Ck,nAe

    i(k+Gn)x

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page7of22

    TheNearlyFreeElectronModelII

    ConsidertheperiodicpotenFalin1DforillustraFon

    Forthesestatestheenergybecomes:

    TheeectisthatanenergygapopensupneartheBZedge.Therearenoallowedstatesinthatgap.

    TheposiFonofEFwithrespecttogapdetermineswhetherasystemisaninsulator,semiconductor,ormetal.

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me(5)

    EF =h2kF 2

    2me=

    h2

    2me(3pi2n)

    23

    (6)

    eiGnx Gn = npi/a (7)

    (8)

    k(r) = uk(r)eikr(9)

    1

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    Image: Sutton, McGill Physics

    John Ellis Cambridge McGill Physics

    Foragivenstatewithwavevectork,onlystateswithk=kG,k2GwillcontributeFouriercomponentstotheoverallwavefuncFon.

    Forastatewithsmallk,thestateswithk=kG,k2Gareallmuchhigherinenergy.ForasmallpotenFalthesestatesdonotmixstrongly,andhencethedispersionrelaFonresemblesthefreeelectroncase.

    ForkstatesneartheBZboundary(/ain1D)thestatewithk=k/aisverycloseinenergyandhenceaectsthedispersionrelaFon(degenerateperturbaFontheory)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page8of22

    TheNearlyFreeElectronModelIII

    OnecanunderstandthisgapasarisingfromcontribuFonstothewavefuncFonfromtwostandingwaveswithk - /a.OnehasamaximumchargedensityneartheBZedge(higherenergy)andonehasaminimumchargedensitythere(lowerenergy)

    Image: John Ellis, Cambridge

    HigherorderharmonicsofthepotenFalVGwilllinkstatesathigherenergiesandgivegapsathighBZedges.

    SinceanykvectorinahigherBZmaybemappedbyareciprocallapcevectorGintotherstBZ,itisoRenconvenienttofoldtheenergybandbackintothe1stBZ.Thisisknownasthereducedzonescheme.

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

  • TheapplicaFonofaforce(sayelectromoFve)changesthewavepacketenergybyanamount

    ForanelectriceldofstrengthE,wehave

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page9of22

    Wavepackets:semiclassicalmodel

    AknowledgeofthebandstructureofamaterialgivesadeepinsightintotheelectronicproperFes.ThedispersionrelaFongivesknowledgeoftheeecFvemassandgroupvelocity:

    WheretheeecFvemasstensorisdenedby

    InpracFcethismeansthatthevelocityisinverselyproporFonaltotheslopeofthebandwhenitcrossestheFermilevel,andthemassisinverselyproporFonaltothesecondderivateof.

    Thusat,shallow,bandstendtocontainslowmoving,heavyelectrons.

    Considerthegroupvelocityvgofawavepacketofelectrons,madeupasasuperposiFonofwavefuncFons. Image: John Ellis, Cambridge

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    1

    k(r) = exp(ik r)kx, ky, kz = 0; 2pi/L; 4pi/L; . . .Vkspace = 43pik

    3F = 2 N

    (2piL

    )3kF = (3pi2n)

    13 , n N/L3

    E(k) = V0 + h2k22me = h2k2

    2me

    EF =h2kF 2

    2me= h

    2

    2me(3pi2n)

    23

    eiGnx Gn = npi/ak(r) = uk(r)eikr

    k(r) = uk(r)eikr =

    k

    Ckeikr

    T = n1a1 + n2a2 + n3a3n1, n2, n3 integers. a1, a2, a3 primitive lattice vectors

    G = m1b1 +m2b2 +m3b3m1,m2,m3 integers. b1, b2, b3 primitive reciprocal lattice vectors

    V (r) =G

    VGeiGr

    (h2k2

    2m E

    )Ck +

    G

    VGCkG = 0

    #k =12

    (Ek + Ekpi/a

    )[(

    EkEkpi/a2

    )2+ |Vpi/a|2

    ] 12

    vg =1

    h$k#(k)

    d#

    dt= F vg = dk

    dt$k#(k) = hdk

    dt

    #(k) = #(k0) +1

    2(h(k k0))m1(h(k k0))

    mij1 =

    1

    h2$ki $kj #(k)

    3

    fD(E, T ) =1

    e(E)/kBT + 1dk

    dt= 1

    heE

    TheenFreFermisphereisshiRedbyauniformamount(dependsonscaveringrate).

    Fromknowledgeofthebandstructure,itispossibletoesFmateconducFvity.

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page10of22

    Bandstructure2Ddivalentmetal

    Considera2Ddivalentmetal.Thereare2electronsperunitcell,soweshouldexpectafullband,andhenceaninsulatoreg.diamond.

    Howeversomedivalentmetals(Ca)aremetallic.Whyisthis?Metalsneednearbyemptystatesinordertopropagatecharge.

    Considerthecaseofa2DsquarelapcepotenFal.ThefreeelectronFS(acircle)hasthesameareaastherstBZ,andhencespillsovertothesecondBZ.

    Images: Singleton, Band theory of solids

    HoweverturningonapotenFalraisestheenergyofthestatesneartheedgesoftheBZandlowersthemnearthecorners.HenceelectronsaretransferredfromthesecondtorstBZ,resulFnginametal.

    Inthereducedzonescheme,thisresultsinsmallFSpockets,bothholeandelectronlike1

    stBZ2ndBZ Freeelectron

    circle

    1stBZ 2ndBZ

    1stBZ 2ndBZPotenFalturnedon

    Electrons

    Holes

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page11of22

    Copperisa3DmonovalentmetalwithconguraFon[Ar]3d104s1.[Ar]3d10electronsgiverisetoFghtlyboundbands,farbelowEF.One4selectrononeFSsheet.

    fcccrystallapce(bccreciprocallapce).TherstBrillouinzone(BZ)isatruncatedpolyhedra

    TheshortestdistancetotheBZedgeisalongthedirecFon.UsingthelapceparametersforCu,inthefreeelectronapproximaFonkF/k=0.903(shouldnottouchzoneedge)

    HowevertheexperimentallydeterminedFStouchestheBZedgealongthedirecFon.ThisarisesfrommixingofstatesofsimilarenergiesneartheBZedge.

    Images: S. Blundell Oxford

    k(r) = exp(ik r)(1)

    kx, ky, kz = 0; 2pi/L; 4pi/L; . . . (2)

    Vkspace =43pik3F = 2 N

    (2piL

    )3(3)

    kF = (3pi2n)13 , n N/L3

    (4)

    E(k) = V0 + h2k2

    2me=

    h2k2

    2me(5)

    EF =h2kF 2

    2me=

    h2

    2me(3pi2n)

    23

    (6)

    eiGnx Gn = npi/a (7)

    (8)

    k(r) = uk(r)eikr(9)

    1

    BandstructureCopper

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page12of22

    Formanysimplediandtrivalentmetals,theFSmaybeschemaFcallyconstructedbyfollowingthesesteps:

    1. Drawafreeelectronspherebasedonthenumberofvalenceelectrons

    2. SuperimposethisontotherstfewBrillouinzones.

    3. WheretheFSmeetstheBZboundarywherethebandgapopensup,splitandroundothesurface.

    4. TranslatetheresulFngsecFonsbackintotherstBZ,usingtheperiodicityofkspace

    Image: University of Florida

    GeneralrulesforconstrucFngFermisurfaces

    Evenusingtheserules,simplemetalsmayhaveexceedinglycomplexFermisurfaces.Thesecanbediculttocalculate,especiallyforthosematerialswithdandfbandswhichtendtobeveryat.

    Eg.Rhenium,hexagonalcrystalstructurewith6(!)bandscrossingtheFermilevel.

    AnexcellentwebresourceistheperiodictableofFermisurfacesfoundontheUniveristyofFloridaswebsite:

    www.phys.u.edu/fermisurface/

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page13of22

    FermiSurfaceofSr2RuO4

    ItissomeFmesusefultothinkofrealspaceorbitalswhenconstrucFngFermisurfaces.ThisapproachiscalledtheFghtbindingapproximaFon

    Sr2RuO4isalayeredruthenatematerialthatisalsoanunconvenFonalsuperconductoratlowtemperature.StronglyanisotropicconducFon(AB>>Chencequasi2Dmetal)

    Tetragonalcrystalstructure.Thedyz(dxz)statehasweakx(y)dependence.WethusexpecttheFSformedbythesestatestobeaatsheetperpendiculartothex(y)direcFon.Wheretheyintersect,theypinchotoformcylinderscenteredaboutthecenterandcornersoftheBZ.

    ThedxystatehasweakzdependenceandformsacylinderinthecenteroftheBZ.

    Image: C. Bergemann, Cambridge

    4delectronshybridizetoformthreelowenergystatesdxydyzdxzwhicharepopulatedby4electrons.

  • Inreciprocalspace,theelectroncantakeanyvalueofkz,butthevalueofkxandkyarequanFzedsuchthat:

    with:

    TheseorbitsformLandautubesinkspace

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page14of22

    Inverycleanmetals,inlargemagneFceldsandatlowtemperatures,anoscillatorycomponentisobservedintransport,thermodynamicandmagneFcmeasurements.

    Thefrequency,angularandtemperaturedependenceofthesignalcanbeusedtocharacterizetheFermisurface.

    ConsideraeldalongthezdirecFon.TheelectronexperiencesaLorentzforce:

    IfthescaveringFmeislarge,theelectroncanundergomanycyclotronorbitsorfrequency

    Image: I. Shiekin, Grenoble

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFons

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    Allowedkspaceorbits(Landautubes)

    H

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

  • InrealexperimentsseveraldierentperiodiciFesareoRenobserved.HowdowemakequanFtaFvesenseofthem?

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page15of22

    Theresultisthatthedensityofelectronstatesg(E)acquiresastronglypeakedenergydependence(eachpeakcorrespondingtoaLandautube):

    IfthemagneFceldisvaried,thepeaksshiRinenergy.IfapeakcrossestheFermienergy,thestateispopulated,thenempFesasitmovesaway.

    ThisleadstooscillaFonsthatareperiodicininversemagneFc,1/B.

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsII

    B1(Tesla1)Fouriertransformofdata(twofrequencies)

    SrFe2As2(amagneFcmetal)

    MagneFzaFon

    InrealexperimentsseveraldierentperiodiciFesareoRenobserved.HowdowemakequanFtaFvesenseofthem?

    BohrSommerfeldquanFzaFoncondiFon(seeKivel):

    wherepisthecanonicalmomentum:

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr = (n+ 1

    2)h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =h

    eB

    (n+

    1

    2

    )

  • TheLorenzforcetellsushowtheareasoftherealspaceandreciprocalspaceorbitsarerelated

    Wecancombingthesetoshowthat

    SonallywecanobtainarelaFonbetweenthefrequencyoftheoscillaFonsandtheareaofthereciprocalspaceorbits

    ThisisknownastheOnsagerrelaFonandshowshowoscillaFonstudiesmayactasacaliperoftheFermisurface.

    ThefrequencyisproporFonaltotheextremalcrosssecFonalareaperpendiculartotheappliedeld.

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page16of22

    Applyingthisyields

    UsingStokestheoremonthesecondterm:

    whereisthemagneFcux.Usingq=efortheelectronandcollecFngtermsgives:

    ShowingthatthemagneFcuxisquanFzed.

    Sincetheuxisjusttheeldthreadingtherealspaceorbit,ofareaArealwecanwrite:

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsIII

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr = (n+ 1

    2)h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr = (n+ 1

    2)h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =h

    eB

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page17of22

    OrbitsmaybeobservedenclosinglledorunlledporFonsoftheFermisurface.

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsIV

  • ThetemperaturedependenceoftheamplitudeisdeterminedbyconsideringthetemperaturedependenceoftheFermiDiracfuncFon.

    TheanalyFcexpressionis:

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page18of22

    OscillaFonsmaybeobservedinmanyphysicalquanFFes,forinstanceresisFvity(theShubnikovdeHaaseect)orinmagneFzaFon(thedeHaasvanAlpheneect).

    AtypicalmeasurementofthedHvAeectinvolvesmeasurementofthedierenFalsuscepFlbiltywithcounterwoundpickupcoils,suchthatthepickupvoltageis

    InaddiFontothefrequency,theamplitudeoftheoscillaFonsmaytellusagreatdeal.

    WhereisthescaveringrateandCisthecyclotronfrequency.TheelddependencecangiveinformaFononscavering.

    ExperimentalprobesoftheFermisurfaceQuantumOscillaFonsV

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    Amp. B1e pic

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    Amp. B1e picAmp.

    sinh()

    = 14.7m!T/B

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    V = dM

    dB

    dB

    dt

    Amp. B1e picAmp.

    sinh()

    = 14.7m!T/B

    Image: C. Bergemann, Cambridge

  • Twofrequencies,correspondingtoneckandbellyorbits(extremalorbits).

    AngulardependencegivessuccessivecrosssecFonalcuts,perpendiculartoappliedeld.

    Weaktemperaturedependence(lightmasses).

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page19of22

    ExampleofaquantumoscillaFonstudy:Ag5Pb2O6nearlyfreeelectronsuperconductor

    Neckorbit(lowfrequency)

    Bellyorbit(highfrequency)

    1stBrillouinzone

  • UseconservaFonofmomentumandenergytoworkouttheiniFalstateofthetheelectron

    Momentumparalleltothesurfaceisconserved

    QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page20of22

    OtherProbesoftheFermiSurface:ARPES

    IniFalElectronstate

    Finalmeasuredenergyandmomentum

    AngularResolvedPhotoEmissionSpectroscopyispowerfultechniquethatusesthephotoelectriceecttoprobetheelectronicstatesnearthesurfaceofasample.

    AnincomingphotonofenergyejectselectronofmomentumkF

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

    2

    E =h2k2Z2m

    + (!+ 1/2)hc

    c =eB

    m

    F = eB v

    p dr =

    (n+

    1

    2

    )h

    p = mv +q

    cA

    p dr = hk dr+ q

    c

    A dr

    A dr ="A d =

    n =(n+

    1

    2

    )hc

    e

    Areal =hc

    eB

    (n+

    1

    2

    )

    Arecip =(e

    h

    )2B2Areal

    1

    Bn=

    2pie

    hcArecip

    (n+

    1

    2

    )

    1

    B=

    1

    Bn+1 1Bn

    =2pie

    h

    1

    Arecip

    Ef =h2k2f2m

    = Ei + h kf = ki

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page21of22

    OtherProbesoftheFermiSurface:ARPESII

    Dierentkstates(detectorangles)

    FermilevelsetbycalibraFngtoastandard

    Occupiedstates

    Example:Sr2RuO4(again!)

    Images: A. Damascelli, UBC

  • QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/ Page22of22

    EssenFalFurtherReading

    Thepreceedingnotesgiveaverybriefoverviewofelectronicbandstructure,Fermisurfaces,andtheexperimentalprobesusedtomeasurethem.Youshouldreadwidelyonthesubjectandbecomfortablewiththemainideas.

    FreeElectronModel:basicconceptsinIntroducFontoSolidStatePhysics9thedKivel,Chapter6.

    NearlyFreeelectronModel:BandTheoryandElectronicProperFesofSolidsJ.Singleton,OxfordMasterSeriesinCondensedMaverPhysics,Chapter3(2001).

    QuantumoscillaFonsandthedeHaasvanAlphenEect:J.Singleton,chapter8(goodintroducFon)

    MagneFcOscilaFonsinMetalsD.Shoenberg,CambridgeUniversityPress,(1984).

    ARPEStechniquesProbingtheFermiSurfaceofCorrelatedElectronSystemsA.DamascelliPhysicaScripta.Vol.T109,6174,2004