Top Banner
Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8 , 2009 1 Femtoscopy in STAR Femtoscopy in STAR vs world systematics vs world systematics Zbigniew Chajęcki, OSU for the Collaboration
31

Femtoscopy in STAR vs world systematics

Jan 23, 2016

Download

Documents

efrat

Femtoscopy in STAR vs world systematics. Zbigniew Chaj ę cki, OSU for the Collaboration. Outline. HBT in Heavy-Ion Collisions at RHIC Multiplicity as universal scaling R(m T ) - direct probe of flow scenario Femtoscopy in p+p [reminder] - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 1

Femtoscopy in STAR Femtoscopy in STAR vs world systematicsvs world systematics

Zbigniew Chajęcki, OSU

for the Collaboration

Page 2: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 2

OutlineOutline

HBT in Heavy-Ion Collisions at RHIC

Multiplicity as universal scaling

R(mT) - direct probe of flow scenario

Femtoscopy in p+p [reminder]

mT scaling of HBT radii (AA/pp) [reminder]

Energy and Momentum Conservation Induced Correlations in p+p

STAR results from p+p (all fits)

world systematics : Rinv(N,mT), Ro,s,l(mT)

How different is pp from AA at the end?

Page 3: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 3

Heavy ions at RHICHeavy ions at RHIC

Multidimensional analysis at RHIC

R(√SNN, mT, b, Npart, A, B, PID)

... but is there a scaling variable?

Page 4: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 4

Multiplicity scaling of HBT radii at Multiplicity scaling of HBT radii at RHICRHIC

Radii scale with multiplicity

Lisa, Pratt, Soltz, Wiedemann, Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

Page 5: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 5

Flow is the most important bulk feature at RHIC mT-dependence of femtoscopy probes flow

the most directly quantitative agreement w/p-only observables

mmTT dependence of pion HBT dependence of pion HBT radiiradii

Page 6: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 6

Femtoscopy - direct evidence of Femtoscopy - direct evidence of flowflow

Spectra

v2

HBT

Flow-dominated “Blast-wave”toy models capture main characteristicse.g. PRC70 044907 (2004)

KR

(fm

)

mT (GeV/c)

STAR PRL 91 262301 (2003)

space-momentum substructure mapped in detail

6

Page 7: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 7

Id-pion correlations in p+pId-pion correlations in p+p

STAR preliminary

mT [GeV/c2] mT [GeV/c2]

p+p and A+A measured in thesame experiment

great opportunity to compare physics

what causes pT-dependence in p+p?

same cause as in A+A?

mT = kT2 + mπ

2

Page 8: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 8

Femtoscopy in pp vs heavy Femtoscopy in pp vs heavy ionsions

pp, dAu, CuCu - STAR preliminary

Ratio of (AuAu, CuCu, dAu) HBT radii by ppHBT radii scale with pp

Scary coincidence or something deeper?

Page 9: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 9

Z.Ch., Gutierrez, Lisa, Lopez-Noriega, [nucl-ex/0505009]

Pratt, Danielewicz [nucl-th/0501003]

Non-femto correlations / SH Non-femto correlations / SH representationrepresentation

d+Au: peripheral collisions

STAR preliminary

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,cos

, ),cos|,(|),(4

|)(| φθφθπ

φθ

STAR preliminary

Page 10: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 10

Decomposition of CF onto Spherical Decomposition of CF onto Spherical HarmonicsHarmonics

Au+Au: central collisions

C(Qout)

C(Qside)

C(Qlong)

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,cos

, ),cos|,(|),(4

|)(| φθφθπ

φθ

Z.Ch., Gutierrez, Lisa, Lopez-Noriega, [nucl-ex/0505009]

Pratt, Danielewicz [nucl-th/0501003]

Qx<0.03 GeV/c

Page 11: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 11

Non-femtoscopic correlations in Non-femtoscopic correlations in STARSTAR

Baseline problem is increasing

with decreasing multiplicity

STAR preliminary

N-dep. of non-femtoscopic correlations in p+p

STAR preliminary

Page 12: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 12

EMCICs in other experimentsEMCICs in other experiments

CLEO PRD32 (1985) 2294

NA22, Z. Phys. C71 (1996) 405

Qx<0.04 GeV/cOPAL, Eur. Phys. J. C52 (2007) 787-803

Qx<0.2 GeV/cNA23, Z. Phys. C43 (1989) 341

E766, PRD 49 (1994) 4373M

ultip

licity

incr

ease

s

Page 13: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 13

C(qo,qs,ql ) = C femto(qo,qs,ql ) ⋅F(qo,qs,ql )

F(qo,qs,ql ) = 1+ δo qo + δs qs + δl ql

F(qo,qs,ql ) = 1+ δoqo + δsqs + δlql

• MC simulations

• ‘ad-hoc’ parameterizations

• OPAL, NA22, …

Common approaches to „remove” Common approaches to „remove” non-femtoscopic correlationsnon-femtoscopic correlations

• An alternative explanation:Energy and Momentum Conservation Induced Correlations, Z.Ch. and Mike Lisa [PRC 78 (2008) 064903, ArXiv:0803.022]

• “zeta-beta” fit by STAR [parameterization of non-femtoscopic correlations in Alm’s]

C( p1, p2 ) ≅ C femto p1, p2( ) 1−1

N2

r p T ,1 ⋅

r p T,2

pT2

+pz,1 ⋅ pz,2

pz2

+E1 − E( ) ⋅ E2 − E( )

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

⎢ ⎢ ⎢

⎥ ⎥ ⎥

|Q|

|Q|

|Q|

Page 14: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 14

k-particle distributions w/ phase-space k-particle distributions w/ phase-space constraintsconstraints

˜ f ( pi) = 2E i f ( pi) = 2E i

dN

d3 pi

single-particle distributionw/o P.S. restriction

˜ f c(p1,...,pk ) ≡ ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d3pi

2E i

˜ f (pi)i= k +1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d3pi

2E i

˜ f (pi)i=1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

= ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d4piδ(pi2 − mi

2)˜ f (pi)i= k +1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d4piδ(pi2 − mi

2)˜ f (pi)i=1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

k-particle distribution (k<N) with P.S. restriction

observed

P - total 4-momentum

Page 15: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 15

k-particle distributionk-particle distribution

˜ f c(p1,...,pk ) = ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟ N

N − k

⎝ ⎜

⎠ ⎟2

exp −

pi,μ − pμ( )i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

2

2(N − k)σ μ2

μ = 0

3

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

where

σ μ2 = pμ

2 − pμ

2

pμ = 0 for μ =1,2,3

k-particle distribution in N-particle system

pμ2 ≡ d3p ⋅pμ

2 ⋅ ˜ f p( )unmeasuredparent distrib

{∫ ≠ d3p ⋅pμ2 ⋅ ˜ f c p( )

measured{∫N.B.

relevant later

–Danielewicz et al, PRC38 120 (1988)–Borghini, Dinh, & Ollitraut PRC62 034902 (2000)–Borghini Eur. Phys. J. C30:381-385, (2003)–Chajecki & Lisa, PRC78 (2008) 064903 arXiv:0803.0022

* “large”: N > ~10

Page 16: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 16

The Complete Experimentalist’s The Complete Experimentalist’s RecipeRecipe

C( p1, p2 ) = Norm ⋅ 1+ λ ⋅ Kcoul (Qinv ) 1+ exp −Rout2 Qout

2 − Rside2 Qside

2 − Rlong2 Qlong

2( )( ) −1[ ]{ } ×

1− M1

r p 1,T ⋅

r p 2,T{ } − M2 p1,Z ⋅ p2,Z{ } − M3 E1 ⋅E2{ } + M4 E1 + E2{ } −

M4( )2

M3

⎢ ⎢

⎥ ⎥

or any other parameterization of CF

9 fit parameters

- 4 femtoscopic

- normalization

- 4 EMCICs

Fit this ….

M1 =1

N pT2

M2 =1

N pz2

M3 =1

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟

M4 =E

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟

Page 17: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 17

EMCIC fit to STAR p+p dataEMCIC fit to STAR p+p data

STAR preliminary

kT = [0.15,0.25] GeV/c kT = [0.25,0.35] GeV/c

kT = [0.35,0.45] GeV/c kT = [0.45,0.60] GeV/c

Page 18: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 18

Fit results: EMCIC parametersFit results: EMCIC parametersS

TA

R p

relim

inar

y

M1 =1

N pT2

= 0.43

M2 =1

N pz2

= 0.22

M3 =1

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟= 1.51

M4 =E

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟= 1.02

⎬ ⎪ ⎪

⎭ ⎪ ⎪

⇒ E = 0.68 GeV

E 2 > pT2 + pz

2

⇒ N > 13.6

Five physical variables - four fit parameters

Can we verify whether kinematic variables showing up in fit parameters have physical values?

⇒ N >M3

M4

⎝ ⎜

⎠ ⎟

21

M1

+1

M2

−1

M3

⎝ ⎜

⎠ ⎟

C( p1, p2 ) = Norm ⋅ 1+ λ ⋅ Kcoul (Qinv ) 1+ exp −Rout2 Qout

2 − Rside2 Qside

2 − Rlong2 Qlong

2( )( ) −1[ ]{ } ×

1− M1

r p 1,T ⋅

r p 2,T{ } − M2 p1,Z ⋅ p2,Z{ } − M3 E1 ⋅E2{ } + M4 E1 + E2{ } −

M4( )2

M3

⎢ ⎢

⎥ ⎥

Page 19: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 19

Various fits to STAR p+p dataVarious fits to STAR p+p data

STAR preliminary

STAR preliminary

Page 20: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 20

mmTT scaling of HBT radii scaling of HBT radii

Various fits give different radii but mT scaling of HBT radii still holds

STAR preliminary

Page 21: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 21

Multiplicity dependence in p+pMultiplicity dependence in p+p

200 GeV

Rin

v [

fm]

STAR preliminary

Page 22: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 22

p+p vs heavy ions - R(N,mp+p vs heavy ions - R(N,mTT))STAR preliminary

Similar mT and multiplicity dependence of HBT radii in p+p and heavy ions in STAR

Is STAR p+p unique? Let’s look at world’s results on HBT in elementary particle collisions …

Page 23: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 23 Z.Ch. arXiv:0901.4078 [nucl-ex]

Femtoscopy in small systemsFemtoscopy in small systemsSystem √s [GeV] Facility Experiment

p-p 1.9 LEAR CPLEAR

1.9 CERN ABBCCLVW

7.2 AGS E766

17 SPS NA49 -prelim

26 SPS NA23

27.4 SPS NA27

31-62 ISR AFS

44,62 ISR ABCDHW

200 SPS NA5

200 RHIC STAR-prelim

p-p 53 ISR AFS

200 SPS NA5

200-900 SPS UA1

1800 Tevatron E735

- 126 ISR AFS

h-p 5.6 CERN ABBCCLVW

21.7 SPS EHS/NA22

System √s[GeV] Facility Experiment

e+e- 3-7,29 SLAC Mark-II

10 CESR CLEO

29 SLAC TPC

29-37 PETRA TASSO

58 TRISTAN AMY

91 LEP OPAL

91 LEP L3

91 LEP DELPHI

91 LEP ALEPH

e-p 300 HERA ZEUS

300 HERA H1

-p 23 CERN EMC-NA9

-N 30 Tevatron E665

-N >10 BBNC

R ≈ 0.5 - 1.5 fm

Page 24: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 24

My first impression My first impression

C = 1+ λ exp −Rinv2 Qinv

2( )

C = 1+ λ exp −RG2 QG

2 + Q02τ 2

( )

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qocτ( )−1

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ δ ⋅Qinv( )

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ δ ⋅Qinv

2( )

C = 1+ λ exp −RG2 QG

2( )

C = 1+ λ2J1 qT RB( )

qT RB

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢ ⎢

⎥ ⎥ ⎥1+ δB ⋅qT( )

C = 1+ λ exp −Re Qinv( )

C = 1+ λ1 exp −R12Q2

( ) + λ2 exp −R22Q2

( )

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ ε ⋅Qinv + δ ⋅Qinv

2( )

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qocτ( )2 ⎛

⎝ ⎜

⎞ ⎠ ⎟−1

C = 1+ λ exp −Rinv2 Qinv

2( )[ ] 1+ δ ⋅Qinv

2( )

−1

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qLcτ( )−1

Can we do a direct comparison between experiments?

Page 25: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 25

Parameterizations of 1D CF used in Parameterizations of 1D CF used in comparision b/w experimentscomparision b/w experiments

C = 1+ λ exp −Rinv2 Qinv

2( )

C = 1+ λ exp −RG2 QG

2 + Q02τ 2

( )

C = 1+ λ2J1 qT RB( )

qT RB

⎣ ⎢ ⎢

⎦ ⎥ ⎥

2

1+ qocτ( )−1

⎪ ⎪ ⎪

⎪ ⎪ ⎪

RB≈2·RG

Page 26: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 26

R(N

) -

worl

d

R(N

) -

worl

d

syste

mati

cs

syste

mati

cs

s > 40GeV

R(N,<mT>)

- no point to compare the magnitude of the HBT radii between experiments since almost each experiment has different <pT>; e.g. <pT>(E735) > <pT>(STAR) -look for trends, instead!

STAR preliminary

Page 27: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 27

1D R(p1D R(pTT))

*

**

pT = 2 / 3 ⋅r p

STAR preliminary

Page 28: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 28

3D R(m3D R(mTT))

*RT ≈ RO ≈ RS

Leptonic results included!

STAR preliminary

Page 29: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 29

• EMCICs seen in small systems• Femtoscopy similar in p+p as in Au+Au @ STAR

• “World results” show both pT and N dependence!

•Same physics in p+p as in Au+Au and the only difference due to phase-space effects?possibilities:

1.HBT signals are insensitive to underlying physics (flow etc)

2.they are sensitive & the very different physics of A+A and p+p look coincidentally identical

3.they are sensitive, and driving physics is the same

SummarySummary

Page 30: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 30

RRinvinv(N,√s) - world systematics(N,√s) - world systematics7.21 GeV 21.7 GeV 27.4 GeV

1800 GeV31-62 GeVSTAR preliminary

200 GeV

Page 31: Femtoscopy in STAR  vs world systematics

Z. Ch. for STAR - WWND 2009, Big Sky, MT, Feb. 1-8, 2009 31

RRGG/R/RBB(N, √s) - world systematics(N, √s) - world systematics21.7 GeV

1800 GeV200-900 GeV200 GeV

53-126 GeV

STAR preliminary

UA1