Top Banner

of 14

fem Plane

Apr 09, 2018

Download

Documents

Bharathi Raja
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/8/2019 fem Plane

    1/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-1

    FEM in two-dimension

    Strain energy density: Uo

    1

    2---

    xx

    xx

    yy

    yy

    xy

    xy+ +[ ]=

    Define: { }

    xx

    yy

    xy

    = { }

    xx

    yy

    xy

    = Uo

    1

    2--- { }

    T{ }=

    Generalized Hookes law

    Plane stress (All stresses with subscript z are zero)

    Plane strain (All strains with subscript z are zero)

    xx

    E

    xx

    yy+[ ]

    1 2

    ( )-------------------------------=

    yy

    E

    yy

    xx+[ ]

    1 2

    ( )-------------------------------=

    xy

    E2 1 +( )--------------------

    xy=

    xx

    E1 ( )

    xx

    yy+[ ]

    1 +( ) 1 2( )------------------------------------------------=

    yy

    E1 ( )

    yy

    xx+[ ]

    1 +( ) 1 2( )------------------------------------------------=

    xy E2 1 +( )-------------------- xy=

    Plane Stress Plane Strain

    E[ ]E

    1 2( )-------------------

    1 0 1 0

    0 01 ( )

    2----------------

    = E[ ]E

    1 2( ) 1 +( )--------------------------------------

    1 ( ) 0 1 ( ) 0

    0 01 2( )

    2--------------------

    =

    Plane StrainPlane Stress

    { } E[ ] { }= E

    [ ] E

    [ ]

    T

    =E E 1 2

    ( ) 1 ( )

    Uo

    1

    2--- { }

    T{ } 1

    2--- { }

    TE[ ]

    T{ } 1

    2--- { }

    TE[ ] { }= = =

  • 8/8/2019 fem Plane

    2/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-2

    Strain-Displacement

    xx x

    u=

    yy yv

    = xy y

    ux

    v+=

    { }

    x 0

    0y

    y

    x

    u

    v

    =

    Displacements approximating:

    u x( ) ui

    e( )fi

    x y,( )

    i 1=

    n

    = v x( ) vie( )

    fi

    x y,( )

    i 1=

    n

    =

    Define the nodal displacement vector as: d{ }

    u1

    e( )

    v1

    e( )

    u2e( )

    v2

    e( )

    un

    e( )

    vne( )

    =

    u

    v f1 0 f2 0 fn 0

    0 f1

    0 f2

    0 fn

    d{ }=

  • 8/8/2019 fem Plane

    3/14

    { }

    x

    0

    0y

    y

    x

    f1

    0 f2

    0 fn

    0

    0 f1 0 f2 0 fnd{ } B[ ] d{ }= =

    B[ ]

    x

    f1

    0x

    f2

    0 x

    fn

    0

    0y

    f1 0

    y

    f2 0 y

    fn

    y

    f1

    x

    f1

    y

    f2

    x

    f2

    y

    fn

    x

    fn

    =

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-3

    Matrix [B] is called strain-displacement matrix

    Uo

    e( ) 12--- d{ }

    TB{ }

    TE[ ] B{ } d{ }=

    Strain Energy:U e( ) Uoe( ) Vd

    V

    =

    Ue( ) 1

    2--- d{ }

    TB{ }

    TE[ ] B{ } d{ } Vd

    V

    1

    2--- d{ }

    TK

    e( )[ ] d{ }= =

    Element stiffness matrix: Ke( )

    [ ] B[ ]T

    E[ ] B[ ] Vd

    V

    =

    Variation in potential energy: e( )

    d{ }T

    Ke( )

    [ ] d{ } Re

    { }( )=

  • 8/8/2019 fem Plane

    4/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-4

    Overview of approximate methods

    Some Jargon

    1-D Heat Conduction:

    T

    x L=

    T

    o

    =

    kxd

    dT

    x 0=

    0=

    x2

    2

    d

    d T0= 0 x L Differential Equation

    Natural Boundary Condition

    Essential Boundary Condition

    L

    x

    Beam Bending

    V

    xd

    dEI

    x2

    2

    d

    d v

    P= =

    v 0( ) 0=

    x2

    2

    d

    d EI

    x2

    2

    d

    d v

    py= 0 x L

    xd

    dv

    x 0=

    0=

    M EI

    x2

    2

    d

    d v0= =

    Differential Equation

    Natural Boundary Condition

    Essential Boundary Condition

    L

    P

    py

  • 8/8/2019 fem Plane

    5/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-5

    Approximation of boundary value problem

    Deu ge=

    Dn

    u gn

    =

    in

    on e

    on n

    Differential Equation

    Natural Boundary Condition

    Essential Boundary Condition

    e n

    Lu f=

    u cj

    j

    1=

    n

    =j set of approximating functions

    set ofj is complete and independent.

    ed

    cj

    Lj

    j 1=

    n

    f= Error in Differential Equation

    Error in Natural Boundary Condition

    Error in Essential Boundary Condition

    en cjDnjj 1=

    n

    gn=

    ee cjDejj 1=

    n

    ge=

  • 8/8/2019 fem Plane

    6/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-6

    Commonality and Differences in

    Approximate Methods

    Commonalities

    Produce a set of algebraic equations in the unknown constants cj. Choose i to set one (or two) of the errors ed, ee, or en to zero Minimize the remaining error(s).

    Differences

    Which error is set to zero

    Domain Methods: ee =0 or en =0Boundary Methods: ed=0

    Error Minimizing Process

    Independence ofi

    No i can be obtained from a linear combination of other is inthe set.

    If the set of functions i

    are not independent then the equations inthe matrix will not be independent and the matrix will be singular.

    Completeness ofi

    In a series sequence no term should be skipped. If a set is not complete then the solution may not converge forsome problems.

  • 8/8/2019 fem Plane

    7/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-7

    Error Minimization

    Weighted Residue

    id( )e

    dxd yd

    i

    e( )ee

    sd

    e

    in( )e

    nsd

    n

    + + 0=

    FEM-Stiffness version: ee = 0

    i

    d( )e

    dxd yd

    i

    n( )e

    nsd

    n

    + 0=

    FEM-Flexibility version: en = 0

    i

    d( )e

    dxd yd

    i

    e( )e

    esd

    e

    + 0=

    BEM: ed = 0

    i

    n( )e

    nsd

    i

    e( )e

    esd

    + 0=

    FEM: Discretization process is on domain of the entire body

    BEM: Discretization process is on the boundary of the body

    In FEM stiffness matrix the equilibrium equation on stresses (differen-

    tial equations) and boundary conditions on stresses (natural boundary

    conditions) are approximately satisfied.

    In FEM flexibility matrix the compatibility equation on stresses (dif-

    ferential equations) and boundary conditions on displacements (essen-

    tial boundary conditions) are approximately satisfied.

  • 8/8/2019 fem Plane

    8/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-8

    Constant Strain Triangle (CST)

    Displacements are linear in x and y, resulting in constant strains.u a

    0a

    1x a

    2y+ += v b

    0b

    1x b

    2y+ +=

    xx x

    ua

    1= =

    yy yv

    b2

    = = xy y

    ux

    v+ a

    2b

    1+= =

    1

    32

    y

    x

    u x y,( ) Ni

    x y,( )ui

    e( )

    i 1=

    3

    =

    v x y,( ) Ni

    x y,( )vi

    e( )

    i 1=

    3

    =d

    e( ){ }

    u1

    e

    v1

    e( )

    u2

    e( )

    v2

    e( )

    u3

    e( )

    v3

    e( )

    =u1

    e( )

    u2e( )

    u3e( )

    v1e( )

    v3e( )

    v2e( )

    xx

    yy

    xy

    1

    2A-------

    y23

    0 y31

    0 y12

    0

    0 x32

    x13

    x21

    x32

    y23

    x13

    y31

    x21

    y12

    d e( ){ } B[ ] d e( ){ }= =

    xij

    xi

    xj

    = yij

    yi

    yj

    =

    Ke( )

    [ ] B[ ]T

    E[ ] B[ ] Vd

    V

    B[ ]T

    E[ ] B[ ]tA= =

    1

    32

    1

    32

    1

    321

    1 1

    N1

    N2

    N3

  • 8/8/2019 fem Plane

    9/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-9

    Pascals Triangle

    Used for determining a complete set of polynomial terms in twodimensions.

    1

    x

    x2

    x3

    x4

    x5

    x

    y2

    y

    y3

    y4

    y5

    xy

    x2y xy2

    x3y x2y2 xy3

    x4y x3y2 x2y3 xy4

    Greater the degree of freedom, less stiff will be element. Interpolation functions are easier to develop with areacoordinates.

  • 8/8/2019 fem Plane

    10/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-10

    Natural Coordinates

    Coordinates which vary between 0 and 1 or -1 and 1. Natural coordinates and non-dimensional coordinates.

    1-d Coordinatesx

    x1x2

    Node 1 Node 2

    Node 1 Node 2

    =1

    Node 1 Node 2

    =1=1

    Possibility 1 Possibility 2

    L1 x( )x x

    2

    x1

    x2

    -----------------

    = L2

    x( )x x

    1

    x2

    x1

    -----------------

    =

    L1 ( ) 1 ( )=

    L2

    ( ) =

    L1 ( ) 1 ( ) 2=

    L2

    ( ) 1 +( ) 2=2-D Triangular elements (Area Coordinates)

    AI

    I

    J

    K

    AJ

    AK

    LI

    AI

    A------=

    LI=0

    LI=1

    LJ

    AJ

    A------=

    LK

    AK

    A--------=

    LI

    LJ

    LK

    + + 1=

    LK

    LJ

  • 8/8/2019 fem Plane

    11/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-11

    Linear Strain Triangle

    I

    J

    K

    1

    2

    3

    4

    5

    6

    N1

    LI

    LI

    1 2( )

    1( ) 1 2( )-------------------------------- 2L

    IL

    I1

    2---

    = =

    N2

    LIL

    J

    1 2( ) 1 2( )------------------------------ 4L

    IL

    J= =

    Homework Problem: Write cubic interpolation functions using area coor-

    dinates for nodes 1,2 and 10.

    I

    J

    K

    1 2

    3

    4

    5

    67

    8

    9

    10

  • 8/8/2019 fem Plane

    12/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-12

    Bi-Linear Quadrilateral

    u a0

    a1x a

    2y a

    3xy+ + += v b

    0b

    1x b

    2y b

    3xy+ + +=

    xx xu a

    1a

    3y+= = yy y

    v b2

    b3x+= =

    xy y

    ux

    v+ a

    2b

    1+( ) a

    3x b

    3y+ += =

    1 2

    3 4

    x

    y

    a a

    b

    b

    u1e( )

    v1

    e( )

    u2e( )

    v2

    e( )

    u3

    e( )v3

    e( )v4

    e( )

    u4

    e( )

    u x y,( ) Ni

    x y,( )ui

    e( )

    i 1=

    4

    =

    v x y,( ) Ni

    x y,( )vi

    e( )

    i 1=

    4

    =

    Interpolation functions in natural coordinates

    x a= y b=

    N1

    1

    4--- 1 ( ) 1 ( )= N

    21

    4--- 1 +( ) 1 ( )=

    N3

    1

    4--- 1 ( ) 1 +( )= N

    41

    4--- 1 +( ) 1 +( )=

    x

    Ni

    Nix

    1a---

    Ni= =

    y

    Ni

    Niy

    1b---

    Ni= =

  • 8/8/2019 fem Plane

    13/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-13

    Other Quadrilaterals

    Complete quadratic

    1 2 3

    4x

    y

    a a

    b

    b

    5 6

    7 8 9

    The stiffness (row and column) related to node 5 is known atelement level and as rows and columns of other elements do notadd to it.

    Quadratic element often used in practice:

    1 2 3

    4x

    y

    a a

    b

    b

    5

    6 7 8

    When internal nodes are eliminated care has to be exercised toensure the mesh from such elements will converge.

  • 8/8/2019 fem Plane

    14/14

    M. Vable Notes for finite element method: Intro to FEM 2-D

    8-14

    Mechanical Loads

    There are three types of mechanical loads

    1. Concentrated Forces or Moments

    The loads must be applied at nodes when making the mesh.

    Theoretically the stresses are infinite at the point of application, hence

    in the neighborhood of concentrated load a large stress gradient can be

    anticipated.

    2. Tractions

    Forces that act on the bounding surfaces.

    Sx xxnx xyny+= Sy yxnx yyny+=nx and ny are the direction cosines of the unit normal

    Tractions has units of force per unit area and are distributed forces.

    Usually the tractions are specified in local normal and tangential coor-

    dinates.

    These distributed forces must be converted to nodal forces.

    In two dimensions the bounding surface is a curve. Distributed forces can

    be converted to nodal forces as was done in 1-d axial and bending prob-

    lems. (work equivalency) Rj p x( )fj x( ) xd

    0

    L

    =

    p

    L

    pL/2 pL/2 pL/6 pL/62pL/3

    Linear Lagrange Quadratic Lagrange

    3. Body Forces

    Forces that act at each and every point on the body.

    Gravity, magnetic, inertial are some examples.

    These forces must be converted to nodal forces.

    (See section 3.9)