Top Banner

of 148

FEM Introduction Mohammed Bakkesin

Jul 05, 2018

Download

Documents

9914102
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    1/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Introduction to the Finite

    Element Method

    Spring 2010

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    2/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Course Objectives

    • The student should be capable of writing

    simple programs to solve different

    problems using finite element method.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    3/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

     Assessment

    • 10% Assignments (1 per week)

    • 20% Quizzes (best 2 out of 3)

     – Week of 12/11/2006

     – Week of 20/12/2006

     – Week of 17/1/2006

    • 20% Course Project

    • 25% Midterm exam (Week of 2/12/2006)• 25% Final exam (starting 3/2/2007)

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    4/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Fundamental Course Agreement

    • Homework is sent in electronic format (Nohardcopies are accepted)

    • Computer programs have to written in

    MATLAB or Mathematica script• No late homework is accepted

    • No excuses are accepted for missing a

    quiz• Best two out of three quizzes are counted

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    5/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    References

    • J.N. Reddy, “An Introduction to the FiniteElement Method” 3rd ed., McGraw Hill, ISBN007-124473-5

    • D.V. Hutton, “Fundamentals of Finite Element

     Analysis” 1st ed., McGraw Hill, ISBN 007-121857-2

    • K. Bathe, “Finite Element Procedures,” PrenticeHall, 1996. (in library)

    • T. Hughes, “The finite Element Method: LinearStatic and Dynamic Finite Element analysis,”Dover Publications, 2000. (in library)

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    6/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Numerical Solution of

    Boundary Value Problems

    Weighted Residual Methods

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    7/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Objectives

    • In this section we will be introduced to thegeneral classification of approximatemethods

    • Special attention will be paid for theweighted residual method

    • Derivation of a system of linear equations

    to approximate the solution of an ODE willbe presented using different techniques

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    8/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Why Approximate?

    • Ignorance

    • Readily Available Packages

    • Need to Develop New Techniques• Good use of your computer!

    • In general, the problem does not have an

    analytical solution!

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    9/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Classification of Approximate

    Solutions of D.E.’s

    • Discrete Coordinate Method

     – Finite difference Methods

     – Stepwise integration methods

    • Euler method

    • Runge-Kutta methods

    • Etc…

    • Distributed Coordinate Method

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    10/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Distributed Coordinate Methods

    • Weighted Residual Methods – Interior Residual

    • Collocation

    • Galrekin

    • Finite Element

     – Boundary Residual• Boundary Element Method

    • Stationary Functional Methods

     – Reyligh-Ritz methods – Finite Element method

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    11/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Basic Concepts

    •  A linear differential equation may be written in the form:

     x g  x f   L  

    • Where L(.) is a linear differential operator.•  An approximate solution maybe of the form:

    n

    i

    ii   xa x f  1

     

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    12/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Basic Concepts

    •  Applying the differential operator on the approximatesolution, you get:

      01

    1

     

      

     

     x g  x La

     x g  xa L x g  x f   L

    n

    i

    ii

    n

    i

    ii

     

     

     x R x g  x Lan

    i

    ii   1

     Residue

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    13/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Handling the Residue

    • The weighted residual methods are all

    based on minimizing the value of the

    residue.

    • Since the residue can not be zero over the

    whole domain, different techniques were

    introduced.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    14/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Collocation Method

    • The idea behind the collocation method is

    similar to that behind the buttons of your

    shirt!

    •  Assume a solution, then force the residue

    to be zero at the collocation points

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    15/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Collocation Method

    0 j x R

      01

     j

    n

    i

     jii

     j

     x F  x La

     x R

     

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    16/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Example Problem

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    17/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The bar tensile problem

      02

    2

     x F 

     x

    u EA

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    18/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bar application

      02

    2

     x F 

     x

    u EA

    n

    i

    ii   xa xu1

     

     x R x F 

    dx

     xd a EA

    n

    i

    i

    12

    Applying the collocation method

      01

    2

    2

     j

    n

    i

     ji

    i   x F dx

     xd a EA

     

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    19/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    In Matrix Form

    nnnnnn

    n

    n

     x F 

     x F 

     x F 

    a

    a

    a

    k k k 

    k k k 

    k k k 

    2

    1

    2

    1

    21

    22212

    12111

    ...

    ...

    ...

    Solve the above system for the “generalized

    coordinates” ai to get the solution for u(x)

     j x x

    iij

    dx

     xd  EAk 

    2

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    20/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Notes on the trial functions

    • They should be at least twice

    differentiable!

    • They should satisfy all boundary

    conditions!

    • Those are called the “ Admissibility

    Conditions”.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    21/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Using Admissible Functions

    • For a constant forcing function, F(x)=f 

    • The strain at the free end of the bar should

    be zero (slope of displacement is zero).

    We may use:  

     

      

     

     xSin x

    2

      

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    22/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Using the function into the DE:

    • Since we only have one term in the series,we will select one collocation point!

    • The midpoint is a reasonable choice!

     

      

      

      

     

     xSin

    l  EA

    dx

     xd  EA

    22

    2

    2

    2   

     f  aSinl 

     EA  

      

      

      

         1

    2

    42

        

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    23/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Solving:

    • Then, the approximate

    solution for this problem is:

    • Which gives the maximum

    displacement to be:

    •  And maximum strain to be:

      EA f  l 

     EA

     f  l 

    Sinl  EA

     f  a2

    2

    2

    21  57.0

    24

    42

       

        

     

      l 

     xSin EA

     f  l  xu 257.0

    2  

    5.057.02

      exact  EA

     f  l l u

    0.19.00     exact  EA

    lf  u x

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    24/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Subdomain Method (free

    reading)

    • The idea behind the

    subdomain method is

    to force the integral

    of the residue to beequal to zero on an

    subinterval of the

    domain

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    25/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Subdomain Method

      01

     j

     j

     x

     x

    dx x R

      011

    1

     

     j

     j

     j

     j

     x

     x

    n

    i

     x

     x

    ii   dx x g dx x La    

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    26/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bar application

      02

    2

     x F 

     x

    u EA

    n

    i

    ii   xa xu1

     

     x R x F 

    dx

     xd a EA

    n

    i

    i

    12

    Applying the subdomain method

     

    11

    1

    2

    2   j

     j

     j

     j

     x

     x

    n

    i

     x

     x

    ii   dx x F dx

    dx

     xd a EA   

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    27/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    In Matrix Form

      11

    2

    2   j

     j

     j

     j

     x

     x

    i

     x

     x

    i dx x F adxdx

     xd  EA

       

    Solve the above system for the “generalized

    coordinates” ai to get the solution for u(x)

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    28/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Galerkin Method

    • Galerkin suggested that the residue

    should be multiplied by a weighting

    function that is a part of the suggested

    solution then the integration is performedover the whole domain!!!

    •  Actually, it turned out to be a VERY

    GOOD idea

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    29/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Galerkin Method

      0 Domain

     j   dx x x R    

      01

        Domain

     j

    n

    i   Domain

    i ji   dx x g  xdx x L xa      

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    30/148

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    31/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    In Matrix Form

     

     Domain

     ji

     Domain

    i j   dx x F  xadx

    dx

     xd  x EA    

      

    2

    2

    Solve the above system for the “generalized

    coordinates” ai to get the solution for u(x)

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    32/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Same conditions on the functions

    are applied

    • They should be at least twice

    differentiable!

    • They should satisfy all boundary

    conditions!

    • Let’s use the same function as in the

    collocation method:

        

     

     

     x

    Sin x 2

     

     

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    33/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Substituting with the approximate

    solution:

            Domain

     j

    n

    i   Domain

    i ji   dx x F  xdx

    dx

     xd  xa EA    

      

    1

    2

    2

     

      

     

     

      

      

      

      

      

     

     fdxl 

     xSin

    dxl 

     xSin

     xSina

    l  EA

    0

    0

    1

    2

    2

    222

     

       

     

        l l a

    l  EA

      2

    22  1

    2

      

      

     EA

     fl l 

     EA

     f  a

    2

    3

    2

    1  52.016

      

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    34/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Substituting with the approximate

    solution: (Int. by Parts)

            Domain

     j

    n

    i   Domain

    i ji   dx x F  xdx

    dx

     xd  xa EA    

      

    1

    2

    2

     

        l l a

    l  EA

      2

    22  1

    2

      

      

     EA

     fl l 

     EA

     f  a

    2

    3

    2

    1  52.016

      

     

         

     Domain

    i j

    i j

     Domain

    i j

    dxdx

     xd 

    dx

     xd 

    dx

     xd  x

    dx

    dx

     xd  x

        

      

    0

    2

    2

    Zero!

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    35/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    What did we gain?

    • The functions are required to be less

    differentiable

    • Not all boundary conditions need to be

    satisfied

    • The matrix became symmetric!

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    36/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Summary

    • We may solve differential equations using a

    series of functions with different weights.

    • When those functions are used, Residue

    appears in the differential equation• The weights of the functions may be determined

    to minimize the residue by different techniques

    • One very important technique is the Galerkin

    method.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    37/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    NOTE

    • Next Sunday 5/11 (No lecture)

    • Following week 12/11, Quiz #1 will be held

    covering all the material up-to this lecture

    • Homework #1 is due next week (Electronic

    submission of report and code is

    mandatory.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    38/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Report Should Include …

    • Cover page

    • Introduction section indicating the

    procedure you used with the equations as

    implemented in your code

    • Results section

    • Observations and Conclusions if any

    according to the output of your program.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    39/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Homework #1

    • Solve the beam bendingproblem, for beamdisplacement, for a simplysupported beam with a loadplaced at the center of the

    beam using – Collocation Method

     – Subdomain Method

     – Galerkin Method

    • Use three term Sin series thatsatisfies all BC’s

    • Write a program that producesthe results for n-term solution.

    )(4

    4

     x F dx

    wd 

    0)()0(

    0)()0(

    2

    2

    2

    2

    dx

    l wd 

    dx

    wd 

    l ww

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    40/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Exact Solution

    12/110

    3

    15

    7

    412

    2/1060

    13

    12)(

    23

    3

     x

     x x x

     x

     x x

     xw

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    41/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Finite Element Method

    2nd order DE’s in 1-D

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    42/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Objectives

    • Understand the basic steps of the finite

    element analysis

    •  Apply the finite element method to second

    order differential equations in 1-D

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    43/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Mathematical Model

    • Solve:

    • Subject to:

     L x

     f  cudx

    dua

    dx

     

      

     

    0

    0

      00 ,0   Qdxdu

    auu L x

     

     

     

     

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    44/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Step #1: Discretization

    •  At this step, we divide

    the domain into

    elements.

    • The elements areconnected at nodes.

    •  All properties of the

    domain are defined at

    those nodes.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    45/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Step #2: Element Equations

    • Let’s concentrate ourattention to a singleelement.

    • The same DE applieson the element level,hence, we may followthe procedure forweighted residual

    methods on theelement level!

    21

    0

     x x x

     f  cu

    dx

    dua

    dx

     

     

     

     

    21

    2211

    21

    ,

    ,,

    QdxduaQ

    dxdua

    u xuu xu

     x x x x

      

      

      

      

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    46/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Polynomial Approximation

    • Now, we may propose an approximate

    solution for the primary variable, u(x),

    within that element.

    • The simplest proposition would be a

    polynomial!

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    47/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Polynomial Approximation

    • Interpolating the values

    of displacement

    knowing the nodal

    displacements, we maywrite:

      01  b xb xu  

      01111  b xbu xu  

      212

    11

    12

    2 u x x x xu

     x x x x xu

      

        

          02122   b xbu xu  

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    48/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Polynomial Approximation

      eu xu

    uuu

    u x x

     x x

    u x x

     x x

     xu

           

     

      

     

     

      

     

    2

    1

    212211

    2

    12

    1

    1

    12

    2

    St #2 El t E ti

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    49/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Step #2: Element Equations

    (cont’d)

    •  Assuming constant

    domain properties:

    •  Applying the

    Galerkin method:

    21

    2

    2

    0

     x x x

     f  cudxud a

        022

      

        Domain

     jii jii

     j   dx f   xu x xcudx

     xd  xa        

    St #2 El t E ti

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    50/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Step #2: Element Equations

    (cont’d)

    • Note that:

    •  And:

    ee   hdx

     xd 

    hdx

     xd    1

    ,

    1 21

      

     

         

     

      

     

     Domain

    i j

     x

     x

    i

     j

     Domain

    i j

    dxdx

     xd 

    dx

     xd a

    dx

     xd  xa

    dxdx

     xd  xa

        

      

    2

    1

    2

    2

    St #2 El t E ti

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    51/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Step #2: Element Equations

    (cont’d)

    • For i=j=1: (and ignoring boundary terms)

    • Which gives:

    01

    2

    1

    2

    1

    2

    2

     

     

     

       

     

     

     

     

     

     

     

       

     x

     x   eee

    dxh

     x x f  u

    h

     x xc

    h

    a

    023

      1 

      

         ee

    e

     fhuchha

    St #2 El t E ti

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    52/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Step #2: Element Equations

    (cont’d)

    • Repeating for all terms:

    • The above equation is called the element

    equat ion .

     

     

     

     

    1

    1

    221

    12

    611

    11

    2

    1   ee

    e

     fh

    u

    uch

    h

    a

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    53/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    What happens for adjacent

    elements?

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    54/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Homework #2

    • Derive the element equation without

    ignoring the boundary terms.

    • What are differences in the element

    equation.

    • The solution should be handed using the

    same report format (use equation editor to

    write your report).

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    55/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Finite Element Procedure

    1. Connecting Elements

    2. Boundary Conditions3. Solving Equations

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    56/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Objectives

    • Learn how the finite element model for the

    whole domain is assembled

    • Learn how to apply boundary conditions

    • Solving the system of linear equations

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    57/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Recall

    • In the previous lecture, we obtained the

    element equation that relates the element

    degrees of freedom to the externally

    applied f ields 

    • Which maybe written:

     

      

     

    1

    1

    221

    12

    611

    11

    2

    1   ee

    e

     fh

    u

    uch

    h

    a

    2

    1

    2

    1

    43

    21

     f   f  

    uu

    k k k k 

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    58/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Two –Element example

    1

    2

    1

    1

    1

    2

    1

    1

    1

    4

    1

    3

    1

    2

    1

    1

     f   f  

    uu

    k k k k 

    2

    2

    2

    1

    2

    2

    2

    1

    2

    4

    2

    3

    2

    2

    2

    1

     f  

     f  

    u

    u

    k k 

    k k 

    3

    2

    1

    3

    2

    1

    3

    2

    1

    2

    4

    2

    3

    2

    2

    2

    1

    1

    4

    1

    3

    1

    2

    1

    1

    0

    0

    QQ

    Q

     f   f  

     f  

    uu

    u

    k k k k k k 

    k k 

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    59/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Illustration: Bar application

    1. Discretization: Divide the bar into N number of

    elements. The length of each element will be(L/N)

    2. Derive the element equation from the differentialequation for constant properties an externally

    applied force:

      02

    2

     x F  x

    u EA

    02

    1

      

      

     x

     x

    i ji j

    e

    dx f  udx

    dx

    h

     EA    

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    60/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Performing Integration:

    1

    1

    211

    11

    2

    1   e

    e

    e

    e

     fh

    u

    u

    h

     EA

    Note that if the integration is evaluated from 0 to he,where he is the element length, the same results

    will be obtained.

    02

    1

     

      

      x

     x

    i ji j

    e

    dx f  udx

    dx

    h

     EA 

      

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    61/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Two –Element bar example

    1

    2

    1

    1

    1

    2

    1

    1

    11

    11

     f   f  

    uu

    h EA

    e

    2

    2

    2

    1

    2

    2

    2

    1

    11

    11

     f  

     f  

    u

    u

    h

     EA

    e

    0

    0

    1

    2

    1

    2110

    121

    011

    3

    2

    1  R

     fh

    uu

    u

    h

     EA e

    e

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    62/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

     Applying Boundary Conditions

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    63/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

     Applying BC’s

    • For the bar with fixed left side and free

    right side, we may force the value of the

    left-displacement to be equal to zero:

    0

    0

    1

    2

    1

    2

    0

    110

    121

    011

    3

    2

     R fh

    u

    uh

     EA e

    e

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    64/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Solving

    • Removing the first row and column of the

    system of equations:

    • Solving:

    1

    2

    211

    12

    3

    2   e

    e

     fh

    u

    u

    h

     EA

    4

    3

    2

    2

    3

    2

     EA

     fh

    u

    ue

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    65/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Secondary Variables

    • Using the values of the displacements

    obtained, we may get the value of the

    reaction force:

    0

    0

    1

    2

    1

    2

    2

    4

    2

    3

    0

    110

    121

    011   R fh

     fh

     fh e

    e

    e

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    66/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Secondary Variables

    • Using the first equation, we get:

    • Which is the exact value of the reactionforce.

     R fh fh ee

    22

    3

    e fh R   2

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    67/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Summary

    • In this lecture, we learned how to

    assemble the global matrices of the finite

    element model; how to apply the boundary

    conditions, and solve the system ofequations obtained.

    •  And finally, how to obtain the secondary

    variables.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    68/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Homework #3

    • Problems #3.9 & 3.13 from the text book

    • Write down a computer code that solves

    the problem for N elements.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    69/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bars and Trusses

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    70/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Objectives

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    71/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bar Example (Ex. 4.5.2, p. 187)

    • Consider the bar shown in the above figure.

    • It is composed of two different parts. One steel tapered

    part, and uniform Aluminum part.• Calculate the displacement field using finite elementmethod.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    72/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bar Example

    • The bar may be represented by two

    elements.

    • The stiffness matrices of the two elements

    may be obtained using the followingintegration:

    2

    1

    2

    122

    22

    21

    2

    1

    11

    11 x

     x

    ee

    ee

     x

     x

    e   dx

    hh

    hh

     x EAdxdx

    dx

    dx

    d dx

     x EA K 

        

     

     

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    73/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bar Example

    • For the Aluminum bar: E=107 psi, and A=1

    in2. we get:

    • For the Steel bar: E=38107 psi, and

     A=(1.5-0.5x/96) in2. we get:

      1111

    120

    10

    11

    11

    120

    10  7

    2

    7   2

    1

     x

     x Al 

      dx K 

      

      

      11

    11

    96

    10.75.4

    11

    11

    96

    5.05.1

    96

    10.3   7

    2

    7   2

    1

     x

     x

     Fe   dx x

     K 

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    74/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bar Example

    •  Assembling the Stiffness matrix and

    utilizing the external forces, we get:

    • The boundary conditions may be applied

    and the system of equations solved.

    0

    0

    10

    10.2

    0

    33.833.80

    33.88.575.49

    05.495.49

    10

    5

    5

    3

    2

    1

    4

     R

    u

    u

    u

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    75/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Bar Example

    • Solving, we get:

    • For the secondary

    variables:

    inu

    u

    181.0

    061.0

    3

    2

    lb R   30000

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    76/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Reading Task

    • Please read and understand examples,4.5.1 & 4.5.3.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    77/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Trusses

    •  A truss is a set of bars that are connectedat frictionless joints.

    • The Truss bars are generally oriented in

    the plain.

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    78/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Trusses

    • Now, the problem lies in thetransformation of the local displacements

    of the bar, which are always in the

    direction of the bar, to the global degreesof freedom that are generally oriented in

    the plain.

    E i f M i

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    79/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Equation of Motion

    0

    0

    0000

    01010000

    0101

    2

    1

    2

    2

    1

    1

     F 

     F 

    v

    u

    v

    u

    h

     EA

    T f ti M t i

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    80/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Transformation Matrix

     DOF  d Transforme DOF  Local  v

    u

    v

    u

    CosSin

    SinCos

    CosSin

    SinCos

    v

    u

    v

    u

    2

    2

    1

    1

    2

    2

    1

    1

    00

    00

    00

    00

      

      

      

      

     DOF 

    d Transforme DOF  Local    T   

    Th E i f M i B

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    81/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Equation of Motion Becomes

    • Substituting into theFEM:

    • Transforming the

    forces:

    • Finally:

      F T  K   

        F T T  K T    T T 

     F  K   

    R ll

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    82/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Recall

    T  K T  K    T 

      

      

      

      

    CosSin

    SinCos

    CosSin

    SinCos

    00

    00

    00

    00

    Where:

    0000

    0101

    0000

    0101

    h

     EA K 

    Element Stiffness Matrix in Global

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    83/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Element Stiffness Matrix in Global

    Coordinates

        

      

      

      

      

      

      

    CosSinSinCos

    CosSin

    SinCos

    CosSin

    SinCos

    CosSin

    SinCos

    h

     EA K 

    00

    00

    00

    00

    0000

    0101

    0000

    0101

    00

    00

    00

    00

    Element Stiffness Matrix in Global

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    84/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Element Stiffness Matrix in Global

    Coordinates

     

        

        

        

        

    22

    22

    22

    22

    22

    12

    2

    1

    22

    12

    2

    1

    22

    1

    22

    1

    22

    12

    2

    1

    SinSinSinSin

    SinCosSinCos

    SinSinSinSin

    SinCosSinCos

    h

     EA K 

    E l 4 6 1 196 201

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    85/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Example: 4.6.1 pp. 196-201

    • Use the finite element analysis to find thedisplacements of node C.

    El t E ti

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    86/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Element Equations

    0000

    0101

    0000

    0101

    1

     L

     EA K   

    1010

    0000

    1010

    0000

    2

     L

     EA K 

    3536.03536.03536.03536.03536.03536.03536.03536.0

    3536.03536.03536.03536.0

    3536.03536.03536.03536.0

    3

     L

     EA K 

    A bl P d

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    87/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

     Assembly Procedure

    3536.13536.0103536.03536.0

    3536.03536.0003536.03536.0

    101000

    000101

    3536.03536.0003536.03536.0

    3536.03536.0013536.03536.1

     L EA K 

    Gl b l F V t

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    88/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Global Force Vector 

     P 

     P 

     F  F 

     F 

     F 

     F 

     F 

     F 

     F 

     F  F 

     F  y

     x

     y

     x

     y

     x

     y

     x

     y

     x

    2

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    Remember!

    NO distributed loadis applied to a truss

    B d C diti

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    89/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Boundary Conditions

    02211  

      V U V U 

    Remove the corresponding rows and columns

     P 

     P 

     L

     EA

    23536.13536.0

    3536.03536.0

    3

    3

    Continue! (as before)

    R lt

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    90/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Results

     EA

     PLV 

     EA

     PLU 

    3 ,828.5

    33 

     P  F  F 

     P  F  P  F 

     y x

     y x

    3 ,0

    , ,

    22

    11

    Postcomp tation

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    91/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Postcomputation

    e

    e

    e

    ee

     A

     P 

     A

     P    21 

    e

    e

    ee

    e

    e

    u

    u

     L

     E  A

     P 

     P 

    2

    1

    2

    1

    11

    11

     

    2

    2

    1

    1

    2

    2

    1

    1

    00

    00

    00

    00

    v

    u

    vu

    CosSin

    SinCos

    CosSinSinCos

    v

    u

    vu

      

      

        

    Postcomputation

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    92/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Postcomputation

     A

     P 

     A

     P 2 ,

    3 ,0 )3()2()1(      

    Summary

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    93/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Summary

    • In this lecture we learned how to apply thefinite element modeling technique to bar

    problems with general orientation in a

    plain.

    Homework #5

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    94/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Homework #5

    • Problem 4.27, – Due 13/12/2006 before 9:00am

    • Problem 4.44,

     – Due 20/12/2006 before 9:00am

    Announcements

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    95/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

     Announcements

    • Compensation Tutorial for E15: – Next Sunday 17/12/2006 3rd Period in H6

    • Next Lecture:

     – Wednesday 20/12/2006 3rd Period in H6

    • Next Quiz:

     – Wednesday 20/12/2006 3rd Period in H6

     – (This Lecture is included)

    Term Projects

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    96/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Term Projects

    •  A problem has got to be solved using thefinite element method

    •  A report is going to be presented by each

    group presenting the problem and itssolution

    The Report should contain:

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    97/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Report should contain:

    • Cover page – Project Title

     – Names of team members

    • Table of contents

    • Introduction and literature survey – Introduction to the problem

     – Historical background and relevance of the problem

     – Papers and books that presented the problem

     – Latest achievements in the problem

    The Report should contain:

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    98/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Report should contain:

    • The finite element derivation – Governing equation

     – Derivation of the element matrices

    • Using Glerkin method•  Application of Symbolic manipulator to derive the

    matrix equations will be appreciated

     – Solution procedure

    The Report should contain:

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    99/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Report should contain:

    • The numerical results and verification – Program results

     – Verification of results compared to published results

     – Parametric study

    • Discussion – Observations of the results

     – Further work that may be performed with the problem

     – Future developments of the model

    • References

    Evaluation

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    100/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Evaluation

    • Report (50%)

    • Code (30%)

     – Structured: Functions built, easily modified

     – Readability: Organization, remarks

     – Length: The shorter the better 

    • Results (20%)

    Projects

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    101/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Projects

    • Heat transfer in a 2-D heat sink

    • 2-D flow around a blunt body in a wind

    tunnel

    • Vibration characteristics of a pipe withinternal fluid flow

    • Panel flutter of a beam

    • Rotating Timoshenko beam/blade

    Heat transfer in a 2 D heat sink

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    102/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Heat transfer in a 2-D heat sink

    • The heat sink will have heat flowing fromone side

    • Convection transfer on the surfaces

    • Different boundary conditions on the otherthree sides

    • Plot contours of temperature distribution

    with different boundary conditions

    2-D flow around a blunt body in a

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    103/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    wind tunnel

    • Potential flow in a duct

    • Rectangular body with different

    Dimensions

    • Study the effect of the body size on theflow speed on both sides

    • Plot contours of potential function,

    pressure, and velocity potential

    Vibration characteristics of a pipe

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    104/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    with internal fluid flow

    • Study the change of the naturalfrequencies with the flow speed under

    different boundary conditions and fluid

    density• Indicate the flow speeds at which

    instabilities occur 

    Panel flutter of a beam

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    105/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Panel flutter of a beam

    •  A fixed-fixed beam is subjected to flowover its surface

    • Plot the effect of the flow speed on the

    natural frequencies of the beam• Indicate the speed at which instability

    occurs

    Rotating Timoshenko beam/blade

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    106/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Rotating Timoshenko beam/blade

    • Rotating beams undergo centrifugaltension that results in the change of its

    natural frequencies

    • Study the effect of rotation speed on thebeam natural frequencies and frequency

    response to excitations at the root

    Teams

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    107/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Teams

    • 2-3 Students teams

    • Names and selected projects should be

    submitted before 4PM on Thursday

    21/12/2006

    Work Progress

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    108/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Work Progress

    •  A report should be submitted By 4PM every Wednesday• 27/12/2006

     – The report should contain a preliminary literature survey

     – Problem statement

     – Governing equations

    • 10/1/2007

     – The report should contain a deeper literature survey – The preliminary derivations of the finite element model

    • 17/1/2007 –  A more mature version of the report should be presented

     – Preliminary results of the code

     – List of the program script should be included

    • 24/1/2007 – Final version of the report should be presented together with the code

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    109/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beams and Frames

    Beams and Frames

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    110/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beams and Frames

    • Beams are the most-used structuralelements.

    • Many real structures may be approximated

    as beam elements• Two main beam theories:

     – Euler-Bernoulli beam theory

     – Timoshenko beam theory

    Euler-Bernoulli Beam Theory

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    111/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Euler Bernoulli Beam Theory

    • The main assumption in the Euler-Bernoulli beam theory is that the beam’s

    thickness is too small compared to the

    beam length• That assumption resulted in that the sheer

    deformation of the beam may be

    neglected without much error in theanalysis

    Governing Equation

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    112/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Governing Equation

    • The equation governing the deformation ofand E-B beam under transverse loading

    may be written in the form:

      )(22

    2

    2

     x F dxwd  x EI 

    dxd 

      

      

    The Thin-Beam Elements

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    113/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Thin Beam Elements

    • The thin beam element has a special feature,namely, the two degrees of freedom at each

    node are related.

    Beam Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    114/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Interpolation Function

    a x H  xw  

    34

    2321)(   xa xa xaa xw  

    a x x x xw   321

      a x xa x H adx

     xdH 

    dx

     xdw

     x

    2

    3210

    Beam Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    115/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Interpolation Function

    a H ww   001  

    aT 

    a

    a

    aa

    l  H 

    l  H 

     H  H 

    w

    w

    ww

     x

     x

    4

    3

    2

    1

    2

    2

    1

    1

    0

    0

    '

    '

    a H ww  x   0'0' 1 al  H wl w

      2

    al  H wl w  x 2''

    Beam Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    116/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Interpolation Function

    4

    3

    2

    1

    2

    32

    2

    2

    1

    1

    3210

    1

    0010

    0001

    '

    '

    a

    a

    a

    a

    l l 

    l l l 

    w

    w

    w

    w

    2

    2

    1

    1

    2323

    22

    4

    3

    2

    1

    '

    '

    1212

    1323

    0010

    0001

    w

    w

    w

    w

    l l l l 

    l l l l 

    a

    a

    a

    a

    Beam Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    117/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Interpolation Function

        ee w x N wT  x H a x H  xw     1

        ewT a   1

    4

    1i

    ii  w x N  xw

    Beam Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    118/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Interpolation Function

     

    2

    32

    3

    3

    2

    2

    3

    32

    3

    3

    2

    2

    23

    2

    231

     x

     x

     x

     x l 

     x

     x x

     x

     x

     x N  x N   T 

    Interpolation Functions

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    119/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Interpolation Functions

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    X

          N      (       x

          )  

    N1

    N2

    N3

    N4

    Beam Stiffness Matrix

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    120/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Stiffness Matrix

    • The governing equation is:

    • Using the series solution

      )(2

    2

    2

    2

     x F dx

    wd  x EI 

    dx

     

     

     

     

    4

    1i

    ii   w x N  xw

    Beam Stiffness Matrix

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    121/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Stiffness Matrix

    • The governing equation becomes

    •  Applying Galerkin method:

      )()(4

    1

    2

    2

    2

    2

     x R x F wdx

     N d  x EI 

    dx

    i

    i

    i

     

     

     

     

          

     

      

      

     

    ee   l 

     j

    i

    ii

     j   dx N  x F wdx N d  x EI 

    dxd dx N  x R

    0

    4

    12

    2

    2

    2

    0

    )()(

    Beam Stiffness Matrix

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    122/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Beam Stiffness Matrix

    • Using integration by parts, twice, andignoring the boundary terms, we get:

    • In matrix form:   0)(0

    4

    12

    2

    2

    2

     

     

     

     

     

     

     

     

     

    el 

     ji

    i

     ji

    dx N  x F wdx

     N d 

    dx

     N d 

     x EI 

          ee   l 

     xx

    e

     xx xx   dx N  x F wdx N  N  x EI 00

    )(

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    123/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Use of Symbolic Manipulator 

    Beam Example

    Optional Homework #6

    http://localhost/var/www/apps/conversion/tmp/scratch_4/BeamProgram.pdfhttp://localhost/var/www/apps/conversion/tmp/scratch_4/BeamProgram.pdf

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    124/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Optional Homework #6

    • Derive the expression for the interpolationfunction for a beam in terms of nodal

    displacements and slopes.

    • Try to use a symbolic manipulator togenerate the expressions.

    )(4

    4

    2

    2

     x F dxwd  EI 

    dt wd  A     

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    125/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Two Dimensional Elements

    2-D Elements

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    126/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    • In this section, we will be introduced to twodimensional elements with single degree

    of freedom per node.

    • Detailed attention will be paid torectangular elements.

    For the 2-D BV Problem

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    127/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    • Let’s consider a problem with a singledependent variable

    • We may set one degree of freedom to

    each node; say f i.• Further, let’s only consider a rectangular

    element that is aligned with the physical

    coordinates

     A Rectangular Element

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    128/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    g

    • For the approximationof a general function

    f(x,y) over the element

    you need a 2-D

    interpolation function

      xya ya xaa y x f   4321,  

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    129/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Let’s follow the same

    procedure!

    2-D Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    130/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    p

    a y x H  y x  f    ,,    xya ya xaa y xf   4321),(  

    a H   f  f     0,00,0 1  

    aT 

    aa

    a

    a

    b H ba H 

    a H 

     H 

     f   f  

     f  

     f  

    4

    3

    2

    1

    4

    3

    2

    1

    0,

    0,

    0,0

    aa H  f  a f     ,00, 2   aba H  f  ba f     ,, 3    ab H  f  b f     ,0,0 4  

    2-D Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    131/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    p

    4

    3

    2

    1

    4

    3

    2

    1

    001

    1

    001

    0001

    a

    a

    a

    a

    b

    abba

    a

     f  

     f  

     f  

     f  

    4

    3

    2

    1

    4

    3

    2

    1

    1111

    100

    1

    00

    11

    0001

     f  

     f  

     f   f  

    abababab

    bb

    aa

    a

    a

    aa

    2-D Interpolation Function

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    132/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    p

      e f   y x N a y x H  y x f     ,,,  

     

    ab xy

    b y

    ab

     xyab

     xy

    a

     xab

     xy

    b

     y

    a

     x

     y x N  y x N   T 

    1

    ,,

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    133/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    How does this look like?

    2-D Interpolation Functions

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    134/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    p

    0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1

    0

    0.3

    0.6

    0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    N1

    x

    y

    0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1

    0

    0.3

    0.6

    0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    N2

    x

    y

    2-D Interpolation Functions

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    135/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    p

    0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1

    0

    0.3

    0.6

    0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    N3

    x

    y

    0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1

    0

    0.3

    0.6

    0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    N4

    x

    y

    Example: Laplace Equation

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    136/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    p p q

    02   

    02

    2

    2

    2

     y x

      

    ei

    ii   y x N  y x N          ,,4

    1

    Example: Laplace Equation

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    137/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    p p q

    ei

    ii   y x N  y x N        ,,4

    1

          0  e

     Area

     y y x x   dA N  N  N  N     

     Applying the Galerkin method and integrating by parts,

    the element equation becomes

    The Element Equaiton

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    138/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

      0222

    222

    222

    222

    6

    1

    22222222

    22222222

    22222222

    22222222

    e

    babababa

    babababa

    babababa

    babababa

    ab  

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    139/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    The Logistic Problem!

    The Logistic Problem

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    140/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    • In the 2-D problems, the numberingscheme, usually, is not as straight forward

    as the 1-D problem

    1-D Example

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    141/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    • Element #1 is associated with nodes 1&2• Element #2 is associated with nodes 2&3, etc…

    2-D Example

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    142/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    2-D Example

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    143/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    For Element #5

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    144/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Global Node Number Local Node Number 

    51

    62

    93

    84

    Contribution of element #5 to global

    matrix

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    145/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    matrix121110987654321

    1

    2

    3

    4

    1,31,41,21,15

    2,32,42,22,16

    7

    4,34,44,24,18

    3,33,43,23,19

    10

    11

    12

     A Solution for the Logistics’

    Problem

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    146/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Problem

    • One solution of the logistic problem is tokeep a record of elements and the

    mapping of the local numbering scheme to

    the global numbering scheme in a table!

    Elements Register: Global

    Numbering

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    147/148

    Introduction to the Finite Element Method

    Dr. Mohammad Tawfik

    Numbering

    Node Number ElementNumber  4321

    45211

    785421011873

    56324

    896551112986

     Algorithm for Assembling Global

    Matrix

  • 8/16/2019 FEM Introduction Mohammed Bakkesin

    148/148

    Matrix

    1. Create a square matrix “ A”;N*N (N=Number of nodes)

    2. For the ith element

    3. Get the element matrix “B”

    4. For the jth node

    5. Get its global number k6. For the mth node

    7. Get its global number n

    8. Let Akn=Akn+B jm9. Repeat for all m

    10. Repeat for all j11. Repeat for all i

    Node Number Element

    Number 4321

    45211

    78542

    1011873

    56324

    89655

    1112986

    121110987654321

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12