Top Banner
1 FEC 512 Financial Econometrics I Behavior of Returns
46

FEC 512.07

Nov 01, 2014

Download

Technology

Orhan Erdem

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: FEC 512.07

1

FEC 512

Financial Econometrics I

Behavior of Returns

Page 2: FEC 512.07

FEC 512 2

What can we say about returns?

� Cannot be perfectly predicted — are random.

� Ancient Greeks:

� Would have thought of returns as determined by

Gods or Fates (three Goddesses of destiny)

� Did not realize random phenomena exhibit

regularities(Law of large numbers, central limit th.)

� Did not have probability theory despite their

impressive math

Page 3: FEC 512.07

FEC 512 3

Randomness and Probability

� Probability arouse of gambling during the

Renaissance.

� University of Chicago economist Frank Knight

(1916) distinguished between

� Measurable uncertainty (i.e.games of

chance):probabilities known

� Unmeasurable uncertainty (i.e.finance):

probabilities unknown

Page 4: FEC 512.07

FEC 512 4

Uncertainty in returns

� At time t, Pt+1 and Rt+1 are not only unknown,

but we do not know their probability

distributions.

� Can estimate these distributions: with an

assumption

Page 5: FEC 512.07

FEC 512 5

Leap of Faith

� Future returns similar to past returns

� So distribution of Pt+1 can estimated from

past data

Page 6: FEC 512.07

FEC 512 6

� Asset pricing models (e.g. CAPM) use the

joint distribution of cross-section {R1t, R2t,…

RNt} of returns on N assets at a single time t.

� Rit is the returns on the ith asset at time t.

� Other models use the time series {Rt, Rt-1,…

R1} of returns on a single asset at a

sequence of times 1,2,…t.

� We will start with a single asset.

Page 7: FEC 512.07

FEC 512 7

Common Model:IID Normal Returns

� R1,R2,...= returns from single asset.

1. mutually independent

2. identically distributed

3. normally distributed

� IID = independent and identically distributed

Page 8: FEC 512.07

FEC 512 8

Two problems

1. The model implies the possibility of

unlimited losses, but liability is usually

limited Rt ≥-1 since you can lose no more

than your investment

2. 1 + Rt(k) = (1 + Rt)(1 + Rt-1) ... (1 + Rt-k+1) is

not normal

� Sums of normals are normal but not

products

� But it would be nice to have normality, so

math is simple

Page 9: FEC 512.07

FEC 512 9

The Lognormal Model

� Assumes: rt = log(1 + Rt)* are IID and normal

� Thus,we assume that

� rt =log(1 + Rt) ~ N(µ,σ2)

� So that 1 + Rt = exp(normal r.v.) ≥ 0

� So that Rt ≥ -1.

� This solves the first problem

� (*): log(x) is the natural logarithm of x.

-3 -2 -1 0 1 2 3

1

2

3

4

5

6

7

8

9

10

x

y

y=e^{x}

Page 10: FEC 512.07

FEC 512 10

Solution to Second Problem

� For second problem:

1 + Rt(k) = (1 + Rt)(1 + Rt-1) ... (1 + Rt-k+1)

log{1 + Rt(k)} = log{(1 + Rt) ... (1 + Rt-k+1)}

=rt + ... + rt-k+1

� Sums of normals are normal (See Lecture Notes 2)

⇒ the second problem is solved

� Normality of single period returns implies

normality of multiple period returns.

Page 11: FEC 512.07

FEC 512 11

Louis Jean-Baptiste Alphonse

Bachelier

� The lognormal distribution goes back to Louis

Bachelier (1900).

� dissertation at Sorbonne called The Theory of

Speculation

� Bachelier was awarded “mention honorable”

Bachelier never found a decent academic

job.

� Bachelier anticipated Einstein’s (1905) theory

of Brownian motion.

Page 12: FEC 512.07

FEC 512 12

� In 1827, Brown, a Scottish botanist, observed the

erratic, unpredictable motion of pollen grains under

a microscope.

� Einstein (1905) — movement due to bombardment

by water molecules — Einstein developed a

mathemetical theory giving precise quantitative

predictions.

� Later, Norbert Wiener, an MIT mathematician,

developed a more precise mathematical model of

Brownian motion. This model is now called the

Wiener process.

Page 13: FEC 512.07

FEC 512 13

� Bachelier stated that

“The math. expectation of the speculator is

zero” (this is essentially true of short-term

speculation but not of long term investing)

Page 14: FEC 512.07

FEC 512 14

Example 1

� A simple gross return (1 + R) is lognormal~ (0,0.12)

– which means that log(1 + R) is N(0,0.12)

What is P(1 + R < 0.9)?

� Solution:

P(1 + R < 0.9) = P{log(1 + R) < log(0.9)}

P{log(1 + R) < -0.105} (log(0.9)= -0.105)

P{ [log(1 + R)-0]/0.1 < [-0.105-0]/0.1}

P{Z<-1.05}=0.1469

Page 15: FEC 512.07

FEC 512 15

Matlab and Excel

� In MATLAB, cdfn(-1.05) = 0.1469

� In Excel:NORMDIST(-1.05,0,1,TRUE)=0.1469

Page 16: FEC 512.07

FEC 512 16

Example 2

� Assume again that 1 + R is lognormal~(0,0.12) and i.i.d. Find the probability that a simple gross two-period return is less than0.9?

� Solution:log{1 + Rt(2)} = rt + rt-1[ Rmbr Lec-2: if Z=aX+bY µZ=a µX +b µY σZ

2=a2 σX2 +b2 σY

2+2abσXY]

2-period grossreturn is lognormal ~ (0,2(0.1)2)

So this probability is

P(1 + R(2) < 0.9)=P(log[1 + R(2)]<log0.9)= P(Z<-0.745)=0.2281

Page 17: FEC 512.07

FEC 512 17

� Let’s find a general formula for the kth period

returns. Assume that

� 1 + Rt(k) = (1 + Rt)(1 + Rt-1) ... (1 + Rt-k+1)

� log {1 + Ri} ~ N(µ,σ2) for all i.

� The {Ri} are mutually independent.

Page 18: FEC 512.07

FEC 512 18

Page 19: FEC 512.07

FEC 512 19

Random Walk

Page 20: FEC 512.07

FEC 512 20

Random Walk

Page 21: FEC 512.07

FEC 512 21

� S0=0 and µ=0.5, σ=1

5 Random Walks

-5

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

m*t

S1

S2

S3

S4

S5

Negative Prices can be

observed

Page 22: FEC 512.07

FEC 512 22

� S0=1 and µ=0, σ=1

� Similar negative prices can be observed

-10

-8

-6

-4

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

S1

S2

S3

S4

S5

Page 23: FEC 512.07

FEC 512 23

Geometric Random Walk

� Therefore if the log returns are assumed to be i.i.d

normals, then the process {Pt:t=1,2,...} is the

exponential of a random walk.We call it a geometric

random walk or an exponential random walk.

Page 24: FEC 512.07

FEC 512 24

Geometric Random Walks

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P1

P2

P4

P5

Page 25: FEC 512.07

FEC 512 25

� If r1,r2...are i.i.d N(µ,σ2) then the process is

called a lognormal geometric random walk

with parameters (µ,σ2).

� As the time between steps becomes shorter

and the step sizes shrink in the appropriate

way, a random walk converges to Brownian

motion and a geometric random walk

converges to geometric Brownian motion;

(see Stochastic Processes Lectures.)

Page 26: FEC 512.07

FEC 512 26

Page 27: FEC 512.07

FEC 512 27

Page 28: FEC 512.07

FEC 512 28

The effect of drift µ

Page 29: FEC 512.07

FEC 512 29

Page 30: FEC 512.07

FEC 512 30

A Simulation of Geometric Random Walk

-0,2

4,8

9,8

14,8

19,8

24,8

29,8

34,8

39,8

44,8

49,8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

-0,2

0

0,2

0,4

0,6

0,8

1

P (Geom. Random Walk)

log returns

Page 31: FEC 512.07

FEC 512 31

Page 32: FEC 512.07

FEC 512 32

Page 33: FEC 512.07

FEC 512 33

Page 34: FEC 512.07

FEC 512 34

Example: Daily Prices for Garanti

� Let’s look at return for Garan from 1/3/2002

to 10/9/2007

� The daily price is taken to be the close price.

0

2

4

6

8

10

12

2002 2003 2004 2005 2006 2007

GARAN

-.16

-.12

-.08

-.04

.00

.04

.08

.12

.16

.20

2002 2003 2004 2005 2006 2007

RET

-.20

-.15

-.10

-.05

.00

.05

.10

.15

.20

2002 2003 2004 2005 2006 2007

LOGRET

Page 35: FEC 512.07

FEC 512 35

Sample: 1/03/2002 10/09/2007

GARAN RET LOGRET

Mean 3.026870 0.002054 0.001581

Median 2.240000 0.000000 0.000000

Maximum 10.00000 0.177779 0.163631

Minimum 0.527830 -0.156521 -0.170220

Std. Dev. 2.227524 0.030800 0.030686

Skewness 0.815476 0.274663 0.033390

Kurtosis 2.803732 6.369416 6.243145

Jarque-Bera 162.5863 701.7116 633.5390

Probability 0.000000 0.000000 0.000000

Sum 4376.854 2.968196 2.284883

Sum Sq. Dev. 7169.895 1.369794 1.359728

Observations 1446 1445 1445

Page 36: FEC 512.07

FEC 512 36

Example: Monthly Prices for Garanti

-0.8

-0.4

0.0

0.4

0.8

1.2

2002 2003 2004 2005 2006 2007

MONTHLYRET

-.6

-.4

-.2

.0

.2

.4

.6

.8

2002 2003 2004 2005 2006 2007

MOTHLYLOGRET

Page 37: FEC 512.07

FEC 512 37

Date: 03/26/09 Time: 12:13

Sample: 1/03/2002 10/09/2007

MONTHLYRET MOTHLYLOGRET

Mean 0.061532 0.046424

Median 0.058146 0.056518

Maximum 1.032785 0.709407

Minimum -0.407409 -0.523250

Std. Dev. 0.174241 0.163564

Skewness 0.675879 -0.153158

Kurtosis 5.621027 4.089647

Jarque-Bera 513.1249 75.58843

Probability 0.000000 0.000000

Sum 87.13000 65.73642

Sum Sq. Dev. 42.95912 37.85555

Observations 1416 1416

Page 38: FEC 512.07

FEC 512 38

Page 39: FEC 512.07

FEC 512 39

Page 40: FEC 512.07

FEC 512 40

Technical Analysis

Page 41: FEC 512.07

FEC 512 41

Efficient Market Hypothesis(EMH)

Page 42: FEC 512.07

FEC 512 42

Page 43: FEC 512.07

FEC 512 43

Page 44: FEC 512.07

FEC 512 44

Three type of Efficiency

Page 45: FEC 512.07

FEC 512 45

Behavioral Finance-a Challange to EMH

� .

Page 46: FEC 512.07

FEC 512 46