Top Banner
Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy
36

Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Feasibility of Demonstrating PPT’s on FalconSAT-3

C1C Andrea JohnsonUnited States

Air Force Academy

Page 2: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Outline

Problems encountered with PPT’s Methods of demonstrating use

Spiral Transfer Attitude

Model Experimental Results Recommendations

Page 3: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Problems Encountered Low Thrust

160e-6 N maximum thrust 15e-6 second pulse, 2 Hz => 4.8e-9 N

average thrust Updated data indicates possibly higher

average thrust (50 μN-s) Power requirements Inaccuracy of original model

Uncoupled equations of motion Inaccurate disturbance torque models

Page 4: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Methods of Demonstrating

Spiral Transfer One PPT yields 1.6 cm change in

semimajor axis with no disturbance torques

No GPS receiver

Page 5: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Methods of Demonstrating Cont.

Attitude Control Z-axis only possibility for control

because of small moment of inertia (1.31 versus 67.4 kg-m2)

Page 6: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Model

Assumptions Equations of motion PPT modeling Disturbance torques Validation

Page 7: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Assumptions

Simplified satellite model Small center of pressure - center of

mass offset No products of inertia Constant, known PPT decay rate Negligible orbital perturbations

Page 8: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Assumptions Cont.

31.100

069.30

0064.3

31.100

045.670

0040.67

Body Mass: 35.5 kg

Boom Mass (without tip mass): 3.15 kg

Tip Mass: 7.45 kg

Total Mass: 46.1 kg

Inertia Tensor (Stowed Boom):

kg-m2

Inertia Tensor (Deployed Boom):

kg-m2

Coefficient of Drag (Cd): 2.6

Spacecraft Dipole: 0.05 A-m2

Orbit: Altitude = 560 kmSemimajor axis = 6938.137 kmInclination = 35.4o

Eccentricity = 0Right Ascension = 0o

Page 9: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Equations of Motion

1322311 )( TIII

2313122 )( TIII

3211233 )( TIII

Page 10: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

PPT Modeling

t

15 usec 15 usec4.8 nNs

160 μN

t4.8 nN

Actual

Simulation1 sec

Page 11: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Disturbance Torques

Gravity Gradient Magnetic Drag Solar Pressure

Page 12: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Gravity Gradient

3323

2 )(3 bylobyloyzoGGx TTIIN

1333

2 )(3 bylobylozxoGGy TTIIN

2313

2 )(3 bylobyloxyoGGz TTIIN

Page 13: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Magnetic

13th degree, 13th order IGRF 10th generation model with

secular terms up to 8th degree and 8th order

Page 14: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Magnetic Cont.

k

n

n

m

mnmnmnn

r Pmhmgnr

a

r

VB

1 0

,,,2

sincos1

k

n

n

m

mnmnmn

nP

mhmgr

aV

rB

1 0

,,,

2

sincos1

k

n

n

m

mnmnmnn

Pmhmgmr

aV

rB

1 0

,,,2

cossinsin

1

sin

1

Page 15: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Magnetic cont.

sincoscossin BBBB rx

cossincossin BBBB ry sincos BBB rz

x

y

z

θ

r

φ

Page 16: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Magnetic Cont.

ECF to ECI coordinate frame conversion

Precession Nutation Sidereal time Polar motion

Page 17: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Drag

VVNAVCF dplanedragˆˆˆ

2

1 2,

VVZDLVCF dcylinderdragˆˆˆ1

2

1 22,

n

iiidrag FRN

1

Page 18: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Solar Pressure

NCCSCAPF dsunsssunsunplanesolar

ˆ3

1cos2ˆ1cos,

NCCECAP dearthssearthearth

ˆ3

1cos2ˆ1cos

ZACCSACCPF sundsunsdssunsuncylindersolar

ˆcos6

sin3

4ˆ63

11sin 1,

ZACCEACCP earthdearthsdsearthearth

ˆcos6

sin3

4ˆ63

11sin 1

Page 19: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Validation Integrator: Attitude and orbital

energy and momentum should be constant

Gravity gradient: Should match C program data

Magnetic field: Should match C program data

Drag and solar pressure validated using hand calculations

Page 20: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Integrator Energy and momentum constant if no

external torques Attitude

Orbit

Normalized error

I Ih T

2

1

R

V 2

2

VRh

o

o t

o

o

h

thh

Page 21: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Integrator: Attitude

Energy Momentum

Maximum error: 3e-14 Maximum error: 1.5e-14

Page 22: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Integrator: Orbit

Energy Momentum

Maximum error: 2.5e-14 Maximum error: 7.5e-15

Page 23: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Gravity Gradient Validation

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

1 JanJan 70

2 Fri

UoSat: Attitude Log File

Time

Roll Angle Pitch Angle Yaw Angle

Page 24: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Gravity Gradient Validation Cont.

Page 25: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Magnetic Field Validation

Magnetic field in ECF matched C program numerical output

8th degree, 8th order With secular terms

ECF to ECI conversion output matched C program

Page 26: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Estimation Theory

Kalman filter Truncate results Statistical mean smoother

Batch estimator Data used by filters comes from

attitude determination Kalman filter

Page 27: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Estimation Theory Cont.

xyyxbylobyloxyozz BMBMTTIII 2313

23

gkNNNII PPTo

solarz

dragzyxxy z

yxbylobylooxyzz TTIIIz 2313

23ˆ

gkNNNBMBMz PPTo

solarz

dragzxyyx z

gkNN PPTo

PPTz z

Page 28: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Estimation Theory Cont.

y

x

PPTo

M

M

N

Xz

yx M

z

M

z

N

zH

xy BBH 1

Page 29: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Batch Filter Algorithm

k

kTkT

R

HHWHH

k

kkTkT

R

zzHCOWH

ˆ

xy BBH 1

Page 30: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Batch Filter Algorithm Cont.

COWHWHHX TT 1

XXX

If X (user defined), then exit the loop. If not,

Page 31: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Experimental Results

No Noise Actual

PPT torque 0.0000

Dipole (x) 0.0000

Dipole (y) 0.0500

Percent Error Kalman w/o Smoothing

Percent Error Kalman w/ Smoothing

Percent Error Batch

N/A N/A N/A

N/A N/A N/A

3.4001E-10 8.6001E-10 0.0000E+00

Page 32: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Experimental Results Cont.

0.3E-6 on B field Actual

PPT torque 0.0000

Dipole (x) 0.0000

Dipole (y) 0.0500

Percent Error Kalman w/o Smoothing

Percent Error Kalman w/ Smoothing Percent Error Batch

N/A N/A N/A

N/A N/A N/A

2.0709 2.2331 0.0318

Page 33: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Experimental Results Cont.

No PPT's   With PPT's  

Noise Percent error Noise Percent error

0.3E-3 on w 0.379488 0.3E-3 on w 10.07

1.33E-6 on wdot 0.379488

1.33E-6 on wdot 10.07  

Page 34: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Experimental Results Cont. Batch filter is more accurate with and

without noise for longer firing times Kalman filter converges faster for short

firing times, but has comparatively poor accuracy

Page 35: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Recommendations 24 hour firing Magnetorquers and non-essential

systems off Magnetometer readings are taken or

IGRF data provided Attitude data for the entire firing period

is taken Initialize attitude determination Kalman

filter at the start of firing and provide batch filter data only after convergence

Page 36: Feasibility of Demonstrating PPT’s on FalconSAT-3 C1C Andrea Johnson United States Air Force Academy.

Questions?