Top Banner
Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion Science Center Meeting February 28, Chicago, IL FSC
9

Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

Dec 15, 2015

Download

Documents

Holly Sopp
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

Fast-Ignition Fuel-Assembly:Theory and Experiments

R. Betti, C.D. Zhou, W. TheobaldK. Anderson, A. Solodov

Laboratory for Laser Energetics5th Fusion Science Center Meeting

February 28, Chicago, IL

FSC

Page 2: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

C. Zhou, W. Theobald, R. Betti, P.B. Radha, V. Smalyuk, C.K.Li et al, Phys. Rev. Lett. 98: 025004 (2007)

Page 3: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

Arb

itra

ry u

nit

s

Energy (MeV)

4 6 8 10 12 14 16 18 200

The maximum R during the burn can be inferredfrom the downshift of the tail of the primary proton spectrum for targets with a 25 atm D-He3 fill

5MeV 14.7MeVBirth energy

9.7MeV E -1.5MeV *broadening =8.2 MeV downshift

2burnmax 0.25g/cmρR

DHe3 Primary Proton spectrum

Fit ofspectrum

FSC

Page 4: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

The areal density is measured during the burn.Protons from secondary D-3He reactions are slowed down by the shell areal density

FSC

C. Zhou, W. Theobald, R. Betti, P.B. Radha, V. Smalyuk, C.K.Li et al, Phys. Rev. Lett. 98: 025004 (2007)

Page 5: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

FSC

C. Zhou, W. Theobald, R. Betti, P.B. Radha, V. Smalyuk, C.K.Li et al, PRL98: 025004 (2007)

DHe3 Secondary Proton spectrum

Reconstructedspectra

Page 6: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.
Page 7: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.
Page 8: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

A complete set of hydro-scaling relations is derivedfor fast-ignition target design

C.D. Zhou and R. Betti, submitted to Phys. Plasmas

Page 9: Fast-Ignition Fuel-Assembly: Theory and Experiments R. Betti, C.D. Zhou, W. Theobald K. Anderson, A. Solodov Laboratory for Laser Energetics 5 th Fusion.

1.85

0.9 7

345( )

3 10iVP Gbar

Slow implosions lead to a low pressure, low temperature fuel assembly optimal for cone-in-shell targets

FSC1.25

0.15 7

3( )

3 10iVT keV

Next step: slow implosions of cone-in-shell targets