Top Banner
Far Infrared and Submillimeter Detectors Xu Huang Apr. 2011
20

Far Infrared and Submillimeter Detectors

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Far Infrared and Submillimeter Detectors

Far Infrared and Submillimeter Detectors

Xu Huang Apr. 2011

Page 2: Far Infrared and Submillimeter Detectors

Outline � Background

� Devices

�  Photoconductors

�  Bolometers

� Heterodyne Receivers

� Case study-Herschel

Page 3: Far Infrared and Submillimeter Detectors

25-450 microns

http://en.wikipedia.org/wiki/Optical_window

Page 4: Far Infrared and Submillimeter Detectors

A Short History �  1878 Langley- bolometer theory

�  After 1959, modern bolometers-carbon resistor

�  1970 The first molecular line CO 115GHz

GaAs Schottky-barrier diode mixer

�  1970th superconductor bolometers

�  1979 first SIS Mixer

�  1992 first Nb SIS Mixer, 492GHz

Page 5: Far Infrared and Submillimeter Detectors

Devices �  Photoconductors

�  Bolometer

�  The distinguishing characteristic is that in a thermal detector the excitations generated by the photons relax to a thermal distribution at an elevated temperature (in the thermometer) before they are detected.

�  In the photon detector, the nonthermal distribution of excited electrons (e.g., in the conduction band) is detected before it relaxes (e.g., to the conduction band).

�  Heterodyne Receiver

Page 6: Far Infrared and Submillimeter Detectors

Ge:Ga

Photoconductors

E. T. Young, 2000

Page 7: Far Infrared and Submillimeter Detectors

�  Table 1. Typical Parameters for Unstressed Ge:Ga Photoconductors

Acceptor Concentration 2 x 1014cm-3

Donor Concentration <1 x 1011cm-3

Typical Bias Field 50mV/mm

Responsivity 7A/W

Quantum Efficiency 20%

Dark Current <200e-/s

Operating Temperature 1.8K

E. T. Young, 2000

Page 8: Far Infrared and Submillimeter Detectors

Bolometers �  Basic Operation

�  Responsivity

�  Noise

�  Examples

�  Superconductor TES Bolometers

Page 9: Far Infrared and Submillimeter Detectors

Basic Operation

T0 T0+T1

Thermal link

Heat Sink Detector power

Pin = P0 +!Pv (t) =GT1 +CdT1dt

Heat capacity C Thermal conductance G Quantum efficiency η

T1 t( ) =

P0

G, t < 0

P0

G+!P1

G(1! e!t/(C/G ) ), t " 0

#

$

%%%%

! T =CG

Thermal time constant

Page 10: Far Infrared and Submillimeter Detectors

Responsivity (Voltage)

))(/()()/()(/ 1PTGVTdPdTVTdPdVSA ααα −===

Pin = P0 +!Pv (t) =GT1 !dP1dT

T1 +CdT1dt

Does not depend on wavelength

! E =C

G !"(T )P1

α(T) temperature coefficient of resistance

Electrical time constant

Detection of Light, G.H. Rieke.

!(T ) = dP1P1dT

=1RdRdT

< 0

Responsivity

P1 = I2R(T ) Electrical power dissipated in the detector

Page 11: Far Infrared and Submillimeter Detectors

Source of Noise

�  a) Johnson noise – randomly fluctuating potential energy on the capacitor

�  b) Thermal noise – fluctuations of entropy across the thermal link

�  c) Photon noise – Poisson statistics of the incoming photon stream

NEPJ !GT 2 (if!(T ) ! T "3/2 )GT 3/2 (if!(T ) ! T "1)

#$%

&%NEPT =

(4kT 2G)1/2

!NEPph =

hc!2"#

!

"#

$

%&

1/2

NEP = (NEPJ2 + NEPT

2 + NEPph2 +...)1/2

Noise Equivalent Power (NEP) (W Hz-1/2)

SN=

PsNEP(df )1/2

Page 12: Far Infrared and Submillimeter Detectors

Superconducting Bolometers

�  TES (Transition Edge Sensor) bolometers

�  SQUID (Superconducting Quantum Interface Device) amplifiers

Detection of Light, G.H. Rieke.

P1 =V 2

R

Page 13: Far Infrared and Submillimeter Detectors

Heterodyne Receivers �  a) High quality, fast photon detectors are not

available at wavelengths longer than the infrared.

�  b) Efficient absorption of the energy of the photons by a device require the device to have dimensions at least comparable to the photon wavelength.

�  c) Coherent receiver- measure and preserve phase information directly, easily adapted for spectroscopy, make interferometry between different receivers possible.

Page 14: Far Infrared and Submillimeter Detectors

Primary antenna

detector output

mixer

Local oscillator

diplexer secondary antenna

IF amplifier

input

I !V 2 !P = (Esig cos(!sigt +! )+ELO cos(!LOt))2

=Esig

2 +ELO2

2constant component! "# $#

+Esig

2

2cos(2!sigt + 2! )+ ELO

2

2cos(2!LOt)+EsigELO cos((!sig +!LO )t +! )

high frequency component! "############# $#############

+EsigELO cos((!sig "!LO )t +! )beat component

! "##### $#####

IF signal Time response ~ 1/fIF nanoseconds

http://en.wikipedia.org/wiki/Heterodyne_detection

Page 15: Far Infrared and Submillimeter Detectors

SIS Mixers Superconductor-Insulator-Superconductor

Photon-assisted tunneling of single electron quasiparticles

eV0 > !1 +!2 " n!!

Up frequency limit- Josephson tunneling

fu = 2! / h

Magnetic field to suppress tunneling current, 2fu

Nb 12×1011Hz

J. R. Tucker & M. J. Feldman, 1985

Page 16: Far Infrared and Submillimeter Detectors

Noise Temperature

Quantum limit

Thermal limit

TN !hvk

TN ! TB

Mixer noise temperature TM =e4k

1!

! =d 2I / dV 2

2dI / dVFigure of merit

A matched blackbody at the receiver input at a temperature TN produces: S/N=1

Detection of Light, G.H. Rieke.

Page 17: Far Infrared and Submillimeter Detectors

Performance Comparison �  a) Bolometer at background limit & Heterodyne receiver in the

thermal limit (hv<<kTB)

�  b) Bolometer at detector noise limit & Heterodyne receiver at quantum limit

(S / N )coh(S / N )inc

=NEP(!fIF )

1/2

2h!!!

(S / N )coh(S / N )inc

=1!!fIF!"

h"kTB

"

#$

%

&'

1/2

�  c) Bolometer at background noise limit & Heterodyne receiver at quantum limit

(S / N )coh(S / N )inc

!2.6"1011Hz

! Detection of Light, G.H. Rieke.

Page 18: Far Infrared and Submillimeter Detectors

Herschel PACS: (60-85, 85-130, 130-210 µm) Bolometer Array for photometry Ge:Ga photoconductor array for spectroscopy SPIRE: (above 200 µm) “Spider-web” bolometer arrays for long wavelength Camera and low to medium resolution spectrometer HIFI: SIS mixer (480-1250GHz) HEB mixer(1410-1910GHz) Very high resolution heterodyne spectrometer

http://en.wikipedia.org/wiki/Herschel_Space_Observatory

Page 19: Far Infrared and Submillimeter Detectors

Conclusion �  Exciting new area, fast developing

�  Detector of choice:

�  Photoconductors (λ<160micron)

�  Bolometers (continuum detection)

�  Heterodyne mixers (high resolution spectrum)

�  Expectation: new superconducting material with better performance

Page 20: Far Infrared and Submillimeter Detectors

Reference �  D. P. Neikirk, D. B. Rutledge, & W. Lam, International Journal

of Infrared and Millimeter Waves, vol. 5, pp.245-277, 1984.

�  E.T. Young, Space Astrophysics Detectors and Detector Technologies: Proceedings: Germanium Detectors for the Far Infrared, June 27, 2000

�  P. L. Richards, J. Appl. Phys. 76(1), 1 July 1994

�  J. R. Tucker & M. J. Feldman Rev. Mod. Phys, Vol. 57, No. 4, October 1985

�  Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona.

�  Submillimeter Astrophysics and Technology: A Symposium Honoring Thomas G. Phillips, Astronomical Society of the Pacific Conference Series, Volume 417