Top Banner
Fall 2002 CS 395: Computer Security 1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard
59

Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Jan 17, 2018

Download

Documents

Diane West

Fall 2002CS 395: Computer Security3 Recall: Private-Key Encryption Algorithms Also called single-key or symmetric key algorithms Both parties share the key needed to encrypt and decrypt messages, hence both parties are equal Classical ciphers are private-key Modern ciphers (developed from product ciphers) include DES, Blowfish, IDEA, LOKI, RC5, Rijndae (AES) and others
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 1

Chapter 3:Modern Block Ciphers and the Data

Encryption Standard

Page 2: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 2

Again Special Thanks to Dr. Lawrie Brown at the Australian Defense

Force Academy whose PowerPoint slides provided the basis for these

slides.

Page 3: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 3

Recall: Private-Key Encryption Algorithms

• Also called single-key or symmetric key algorithms

• Both parties share the key needed to encrypt and decrypt messages, hence both parties are equal

• Classical ciphers are private-key• Modern ciphers (developed from product ciphers)

include DES, Blowfish, IDEA, LOKI, RC5, Rijndae (AES) and others

Page 4: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 4

Modern Block Ciphers

• One of the most widely used types of cryptographic algorithms – For encrypting data to ensure secrecy– As a cryptographic checksum to ensure integrity– For authentication services

• Used because they are comparatively fast, and we know how to design them

• We’ll look in particular at DES (Data Encryption Standard)

Page 5: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 5

Block vs Stream Ciphers• Block ciphers process messages in into blocks, each of

which is then en/decrypted – So all bits of block must be available before processing

• Like a substitution on very big characters– 64-bits or more

• Stream ciphers process messages a bit or byte at a time when en/decrypting

Page 6: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 6

Block Cipher Principles

• most symmetric block ciphers are based on a Feistel Cipher Structure– Arbitrary reversible substitution cipher for a large block size is not

practical for implementation and performance reasons

• needed since must be able to decrypt ciphertext to recover messages efficiently

• block ciphers look like an extremely large substitution • would need table of 264 entries for a 64-bit block • instead create from smaller building blocks, using idea of a

product cipher

Page 7: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 7

Why Feistel?

• If we’re going from n bit plaintext to n bit ciphertext:– There are 2n possible plaintext blocks.– Each must map to a unique output block, so total of 2n! reversible

transformations • List all plaintext blocks. First one can go to any of 2n outputs, next to

any of 2n-1 outputs, etc.– So, to specify a specific transformation, essentially need to provide

the list of ciphertext outputs for each input block.– How many? Well, 2n inputs, so 2n outputs, each n bits long implies

an effective key size of n(2n) bits. • For blocks of size 64 (desirable to thwart statistical attacks) this

amounts to a key of length 64(264) = 270 ~ 1021 bits

Page 8: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 8

Claude Shannon and Substitution-Permutation Ciphers

• in 1949 Claude Shannon introduced idea of substitution-permutation (S-P) networks– modern substitution-transposition product cipher – Key technique of layering groups of S-boxes separated by larger P-

box

• these form the basis of modern block ciphers • S-P networks are based on the two primitive cryptographic

operations we have seen before: – substitution (S-box)– permutation (P-box)

• provide confusion and diffusion of message

Page 9: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 9

Confusion and Diffusion

• cipher needs to completely obscure statistical properties of original message

• a one-time pad does this• more practically Shannon suggested combining elements

to obtain:– diffusion – dissipates statistical structure of plaintext over bulk of

ciphertext– confusion – makes relationship between ciphertext and key as

complex as possible• These have become the cornerstone of modern

cryptographic design

Page 10: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 10

Feistel Cipher Structure• Horst Feistel devised the Feistel cipher

– based on concept of invertible product cipher– His main contribution was invention of structure that

adapted Shannon’s S-P network into easily inverted structure.

• Process consists of several rounds. In each round:– partitions input block into two halves– Perform substitution on left half by a round function

based on right half of data and subkey– then have permutation swapping halves

• implements Shannon’s substitution-permutation network concept

Page 11: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 11

Page 12: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 12

Feistel Cipher Design Principles• block size

– increasing size improves security, but slows cipher – 64 bits reasonable tradeoff. Some use 128 bits

• key size – increasing size improves security, makes exhaustive key searching harder,

but may slow cipher – 64 bit considered inadequate. 128bit is common size

• number of rounds – increasing number improves security, but slows cipher

• subkey generation – greater complexity can make analysis harder, but slows cipher

• round function – greater complexity can make analysis harder, but slows cipher

• fast software en/decryption & ease of analysis– are more recent concerns for practical use and testing– Making algorithms easy to analyze helps analyze effectiveness (DES

functionality is not easily analyzed)

Page 13: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 13

Feistel Cipher Decryption

Page 14: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 14

Data Encryption Standard (DES)

• most widely used block cipher in world • adopted in 1977 by NBS (now NIST)

– as FIPS PUB 46• encrypts 64-bit data using 56-bit key• has widespread use• Considerable controversy over its security

– Tweaked by NSA?

Page 15: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 15

DES History

• IBM developed Lucifer cipher– by team led by Feistel– used 64-bit data blocks with 128-bit key

• then redeveloped as a commercial cipher with input from NSA and others

• in 1973 NBS issued request for proposals for a national cipher standard

• IBM submitted their revised Lucifer which was eventually accepted as the DES

Page 16: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 16

DES Design Controversy• Although DES standard is public was considerable

controversy over design – in choice of 56-bit key (vs Lucifer 128-bit)– and because design criteria were classified– And because some NSA requested changes incorporated

• Subsequent events and public analysis show in fact design was appropriate– Changes made cipher less susceptible to differential or linear

cryptanalysis• DES has become widely used, esp in financial applications• 56 bit key is not sufficient. Demonstrated breaks:

– 1997 on large network in few months– 1998 on dedicated hardware in a few days– 1999 above combined in 22 hours!

Page 17: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 17

DES Encryption

Page 18: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 18

Initial Permutation IP

• first step of the data computation • IP reorders the input data bits

– Permutation specified by tables (See text p. 76)• even bits to LH half, odd bits to RH half • quite regular in structure (easy in h/w)

Page 19: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 19

DES Round Structure

• uses two 32-bit L & R halves• as for any Feistel cipher can describe as:

Li = Ri–1

Ri = Li–1 xor F(Ri–1, Ki)

• takes 32-bit R half and 48-bit subkey and:– expands R to 48-bits using perm E– adds to subkey (XOR)– passes through 8 S-boxes to get 32-bit result

• Each S-box takes 6 bits as input and produces 4 as output– finally permutes this using 32-bit perm P

Page 20: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 20

Page 21: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 21

S-boxes

There are four more

Page 22: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 22

DES Round Structure

Page 23: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 23

Substitution Boxes S

• have eight S-boxes which map 6 to 4 bits • each S-box is actually 4 little 4 bit boxes

– outer bits 1 & 6 (row bits) considered 2-bit number that selects row

– inner bits 2-5 (col bits) considered 4-bit number that selects column.

– Decimal number in table is converted to binary and that gives the four output bits

– result is 8 lots of 4 bits, or 32 bits

• row selection depends on both data & key– feature known as autoclaving (autokeying)

Page 24: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 24

DES Key Schedule

• forms subkeys used in each round• consists of:

– initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves

– 16 stages consisting of: • selecting 24-bits from each half • permuting them by PC2 for use in function f, • rotating each half separately either 1 or 2 places depending on

the key rotation schedule K

Page 25: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 25

Page 26: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 26

Page 27: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 27

DES Decryption

• decrypt must unwind steps of data computation • with Feistel design, do encryption steps again • using subkeys in reverse order (SK16 … SK1)• note that IP undoes final FP step of encryption • 1st round with SK16 undoes 16th encrypt round• ….• 16th round with SK1 undoes 1st encrypt round • then final FP undoes initial encryption IP • thus recovering original data value

Page 28: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 28

Avalanche Effect

• Desirable property for an encryption algorithm• A change of one input or key bit results in

changing approx half output bits• This makes attempts to “home-in” by guessing

keys impossible• DES exhibits strong avalanche

Page 29: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 29

Strength of DES – Key Size

• 56-bit keys have 256 = 7.2 x 1016 values• brute force search looks hard• recent advances have shown is possible (as we’ve

seen)– in 1997 on Internet in a few months – in 1998 on dedicated h/w (EFF) in a few days – in 1999 above combined in 22hrs!

• still must be able to recognize plaintext• now considering alternatives to DES

Page 30: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 30

Strength of DES – Timing Attacks

• attacks actual implementation of cipher• use knowledge of consequences of

implementation to derive knowledge of some/all subkey bits

• specifically use fact that calculations can take varying times depending on the value of the inputs to it

• particularly problematic on smartcards

Page 31: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 31

Strength of DES – Analytic Attacks

• now have several analytic attacks on DES• these utilize some deep structure of the cipher

– by gathering information about encryptions – can eventually recover some/all of the sub-key bits – if necessary then exhaustively search for the rest

• generally these are statistical attacks• include

– differential cryptanalysis – linear cryptanalysis – related key attacks

Page 32: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 32

Differential Cryptanalysis

• one of the most significant recent (public) advances in cryptanalysis

• known by NSA in 70's c.f. DES design• Murphy, Biham & Shamir published 1990• powerful method to analyse block ciphers • used to analyse most current block ciphers with

varying degrees of success• DES reasonably resistant to it, because Lucifer

design team was aware of it.

Page 33: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 33

Differential Cryptanalysis

• a statistical attack against Feistel ciphers • uses cipher structure not previously used • design of S-P networks has output of function f

influenced by both input & key• hence cannot trace values back through cipher

without knowing values of the key • Differential Cryptanalysis compares two related

pairs of encryptions

Page 34: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 34

Differential Cryptanalysis Compares Pairs of Encryptions

• with a known difference in the input • searching for a known difference in output• when same subkeys are used

Page 35: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 35

Differential Cryptanalysis

• have some input difference giving some output difference with probability p

• if find instances of some higher probability input / output difference pairs occurring

• can infer subkey that was used in round• then must iterate process over many rounds (with

decreasing probabilities)

Page 36: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 36

Differential Cryptanalysis• perform attack by repeatedly encrypting plaintext pairs

with known input XOR until obtain desired output XOR • when found

– if intermediate rounds match required XOR have a right pair– if not then have a wrong pair

• can then deduce keys values for the rounds– right pairs suggest same key bits– wrong pairs give random values

• for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs

• Attack on full DES requires on order of 247 chosen plaintext, with considerable amount of analysis– In practice, exhaustive search still easier.

Page 37: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 37

Linear Cryptanalysis

• another recent development • also a statistical method • must be iterated over rounds, with decreasing

probabilities• developed by Matsui et al in early 90's• based on finding linear approximations• can attack DES with 247 known plaintexts, still not

practical

Page 38: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 38

Linear Cryptanalysis

• find linear approximations with prob p != ½P[i1,i2,...,ia](+)C[j1,j2,...,jb] = K[k1,k2,...,kc]

where ia,jb,kc are bit locations in P,C,K • gives linear equation for key bits• get one key bit using max likelihood alg• using a large number of trial encryptions • effectiveness given by: |p–½|

Page 39: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 39

Block Cipher Design Principles

• basic principles still like Feistel in 1970’s• number of rounds

– more is better, exhaustive search best attack• function f:

– provides “confusion”, is nonlinear, avalanche• key schedule

– complex subkey creation, key avalanche

Page 40: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 40

Modes of Operation

• block ciphers encrypt fixed size blocks• eg. DES encrypts 64-bit blocks, with 56-bit key • need way to use in practice, given usually have

arbitrary amount of information to encrypt • four were defined for DES in ANSI standard

ANSI X3.106-1983 Modes of Use• subsequently now have 5 for DES and AES• have block and stream modes

Page 41: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 41

Electronic Codebook Book (ECB)

• message is broken into independent blocks which are encrypted– Pad last block if necessary

• each block is a value which is substituted, like a codebook, hence name

• each block is encoded independently of the other blocks Ci = DESK1 (Pi)

Page 42: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 42

Electronic Codebook Book (ECB)

Page 43: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 43

Advantages and Limitations of ECB

• repetitions in message may show in ciphertext – if aligned with message block – particularly with data such as graphics – or with messages that change very little, which become

a code-book analysis problem • weakness due to encrypted message blocks being

independent • main use is sending a few blocks of data

– E.g. Transmitting an encryption key

Page 44: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 44

Cipher Block Chaining (CBC) • Wanted a method in which repeated blocks of

plaintext are encrypted differently each time• Like ECB, message is broken into blocks, but

these are linked together in the encryption operation

• each previous cipher blocks is chained with current plaintext block, hence name

• use Initial Vector (IV) to start process Ci = DESK1(Pi XOR Ci-1)C-1 = IV

• Used for bulk data encryption, authentication

Page 45: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 45

Cipher Block Chaining (CBC)

Page 46: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 46

CBC Decryption

jjjjjKj

jjjK

jjKKjK

jjKj

PPCCCDC

PCCD

PCEDCD

PCEC

111

1

1

1

][

)(][

)]([][

][Encryption stepDecryption step(with justification)

Page 47: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 47

Advantages and Limitations of CBC

• Good: each ciphertext block depends on all message blocks, thus a change in the message affects all ciphertext blocks after the change as well as the original block

• need Initial Value (IV) known to sender & receiver – however if IV is sent in the clear, an attacker can change bits of

the first block, and change IV to compensate – hence either IV must be a fixed value (as in EFTPOS) or it must

be sent encrypted in ECB mode before rest of message

• at end of message, handle possible last short block – by padding either with known non-data value (eg nulls)– or pad last block with count of pad size

• eg. [ b1 b2 b3 0 0 0 0 5] <- 3 data bytes, then 5 bytes pad+count

Page 48: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 48

Using DES as Stream Cipher

• If the data is only available a bit/byte at a time (eg. terminal session, sensor value etc), then must use some other approach to encrypting it, so as not to delay the info.

• Idea: Use the block cipher essentially as a pseudo-random number generator and combine "random" bits with the message.

Page 49: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 49

Cipher FeedBack (CFB)

Page 50: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 50

Cipher FeedBack (CFB)

• message is treated as a stream of bits • added to the output of the block cipher • result is feed back for next stage (hence name) • standard allows any number of bits (1,8 or 64 or whatever)

to be fed back – denoted CFB-1, CFB-8, CFB-64 etc

• is most efficient to use all 64 bits (CFB-64)Ci = Pi XOR DESK1(Ci-1)

C-1 = IV

• Good for stream data encryption, authentication

Page 51: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 51

Efficiency Issue

• As originally defined, idea was to "consume" as much of the "random" output as needed for each message unit (bit/byte) before "bumping" bits out of the buffer and re-encrypting. – Wasteful: slows the encryption down as more

encryptions required– Concept: Consume ``random’’ bits as message

bits/bytes arrive, feed them back and when they're used up, only then feed a full block of ciphertext back.

– This is CFB-64 mode, the most efficient. Usual choice for quantities of stream oriented data, and for authentication use.

Page 52: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 52

Advantages and Limitations of CFB

• appropriate when data arrives in bits/bytes • most common stream mode • limitation is need to stall while do block

encryption after every n-bits (see previous slide)• note that the block cipher is used in encryption

mode at both ends • errors propagate for several blocks after the error

Page 53: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 53

Output FeedBack (OFB)

• message is treated as a stream of bits • output of cipher is added to message • output is then feed back (hence name) • Key advantage is that feedback is independent of message

– Error in computation of C1 affects only recovery of P1. In CFB, error in C1 is fed back to next block, so it affects recovery of P2, etc.

• can be computed in advanceCi = Pi XOR Oi Oi = DESK1(Oi-1)O-1 = IV

• Good for stream encryption over noisy channels

Page 54: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 54

Output FeedBack (OFB)

Page 55: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 55

Advantages and Limitations of OFB

• used when error feedback a problem or where need to do encryptions before message is available

• superficially similar to CFB • but feedback is from the output of cipher and is independent of

message • a variation of a Vernam cipher

– hence must never reuse the same sequence (key+IV) • sender and receiver must remain in sync, and some recovery method is

needed to ensure this occurs • originally specified with m-bit feedback in the standards • subsequent research has shown that only OFB-64 should ever be used

Page 56: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 56

Counter (CTR)

• a “new” mode– Though proposed early on (Diffie and Hellman in 1979), only

recently interest has resurfaced and NIST has approved method

• similar to OFB but encrypts counter value rather than any feedback value

• must have a different key & counter value for every plaintext block (never reused)Ci = Pi XOR Oi

Oi = DESK1(i)

• Good for high-speed network encryptions

Page 57: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 57

Counter (CTR)

Page 58: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 58

Advantages and Limitations of CTR

• efficiency– can do parallel encryptions– Can take advantage of preprocessing– good for bursty high speed links

• random access to encrypted data blocks• provable security (good as other modes)• but must ensure never reuse key/counter values,

otherwise could break (cf OFB)

Page 59: Fall 2002CS 395: Computer Security1 Chapter 3: Modern Block Ciphers and the Data Encryption Standard.

Fall 2002 CS 395: Computer Security 59

Summary

• have considered:• block cipher design principles• DES

– details– strength

• Differential & Linear Cryptanalysis• Modes of Operation

– ECB, CBC, CFB, OFB, CTR